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Abstract 

  Chagas disease, a neglected tropical disease affecting 

over 6 million people globally, often presents with subtle 

ECG abnormalities, complicating diagnosis. Chagas 

disease is a leading cause of cardiovascular morbidity, yet 

accurate detection remains challenging. This study 

proposes two computational approaches, machine 

learning and deep learning, for classifying Chagas and 

non-Chagas disease using ECG signals. A multi-scale one-

dimensional convolutional neural network (CNN) was 

developed, incorporating three convolutional blocks, 

global average pooling, and focal loss to address class 

imbalance, achieving robust binary classification across 

12-lead ECGs normalized to 5000 samples. Additionally, 

a random forest (RF) classifier was trained on extracted 

features, including morphological and time-series 

attributes from P, QRS, and T waves, after denoising with 

a bandpass filter. Both methods were evaluated on a 

Physionet dataset, with the CNN demonstrating high 

accuracy and confidence calibration. These scalable 

techniques provide promising tools for automated Chagas 

disease detection, supporting precision cardiology and 

enhancing clinical outcomes. Moreover, it highlights the 

effectiveness of the CNN model in detecting Chagas 

disease using the focal loss function. Our team, Leicester 

Fox, had a challenge score of 0.258 for an official phase 

using the CNN classification model. 

 

1. Introduction 

Chagas disease, caused by Trypanosoma cruzi, affects 

an estimated 6 to 7 million people worldwide. 

Approximately 30% of infected individuals develop 

chronic Chagas cardiomyopathy (CCC), which can lead to 

arrhythmias, heart failure, and sudden cardiac death [1]. 

Among these complications, atrial fibrillation (AF) is one 

of the most common and prognostically significant, being 

strongly associated with stroke and mortality in CCC 

patients [2]. Electrocardiography (ECG) remains the 

primary tool for CCC diagnosis due to its low cost and non-

invasive nature, especially in resource-limited regions. 

However, its sensitivity for early-stage myocardial injury 

is suboptimal. Studies show that up to 40% of Chagas 

patients exhibit ECG abnormalities, including right bundle 

branch block and AF, even in early disease stages [3, 4]. 

To address these limitations, this study proposes two 

automated ECG-based classification methods. The first is 

a multi-scale convolutional neural network (CNN) 

designed to extract hierarchical features directly from raw 

12-lead signals. The second is a classical random forest 

(RF) model that leverages 29 handcrafted morphological 

and temporal ECG features for classification. Both models 

are designed to eliminate reliance on manual interpretation 

and to enhance scalability and objectivity. 

Furthermore, we employed focal loss to address class 

imbalance and incorporated confidence calibration to 

improve model reliability in clinical settings [5, 6]. These 

strategies ensure that both models can deliver robust and 

reliable predictions, particularly when identifying Chagas-

positive patients in large or imbalanced datasets. 

Overall, these data-driven approaches offer scalable and 

practical tools for early Chagas detection. Their 

implementation could significantly benefit clinical 

workflows and public health screening, particularly in 

areas with limited diagnostic capacity [7]. 

 

2. Materials and Methodology 

The dataset used in this study is from three resources 

(called Code-15, SaMi-Trop, and PTB-XL datasets) [8-

10]. In this work, we propose two methods: machine 

learning (based on feature extraction and a random forest 

model) and deep learning (based on 1D-CNN model) to 

classify Chagas and non-Chagas disease based on ECG 

signals. 30% of the data from each of the three resources 



was used to train the CNN model, while samples from the 

Code-15 and SaMi-Trop datasets were used for both 

training and testing the random forest classifier. Figure 1 

shows the pipeline of the proposed methods. These 

approaches are illustrated as follows: 

2.1.  Convolutional Neural Network 

We developed a convolutional neural network (CNN) 

for the automatic classification of ECGs. The architecture 

of the model is based on a multi-scale one-dimensional 

CNN. The architecture consists of three convolutional 

blocks followed by global average pooling and fully 

connected (FC) layers for binary classification. We 

implemented a balanced dataset loader that oversampled 

Chagas cases and standardized ECG signals across 12 

leads by normalizing and interpolating them to a fixed 

length of 5000 samples, thereby addressing class 

imbalance. Moreover, a combination of focal loss was 

applied to mitigate the class imbalance problem, and a 

confidence calibration loss was used to boost reliable 

positive predictions. The Adam optimizer was used to train 

and test the CNN model, incorporating weight decay and a 

dynamic learning rate with an early stopping to prevent 

overfitting. Fine-tuning was performed using pre-trained 

weights that were loaded optionally from a previous 

submission.  

2.2.  Focal Loss Function 

 The focal loss (FL) function was used to address the 

problem of imbalanced data (Chagas vs. non-Chagas 

classes), as is the case in this challenge. This function helps 

the model pay more attention to the minority (Chagas) 

cases. Focal loss ensures the CNN model is not dominated 

by majority class signals during the learning process. Focal 

loss for binary classification is formulated as: 

𝑝𝑡 =  {
𝑝            𝑖𝑓 𝑦 = 1      (𝑐ℎ𝑎𝑔𝑎𝑠 𝑐𝑙𝑎𝑠𝑠)

1 − 𝑝         𝑖𝑓 𝑦 = 0 (𝑛𝑜𝑛 − 𝑐ℎ𝑎𝑔𝑎𝑠 𝑐𝑙𝑎𝑠𝑠)
          1                                    

𝑦 ∈ {0,1} represents the ground truth label, 𝑝 ∈ [0,1] 

represents the predicted probability for positive class 

(Chagas), and 𝑝𝑡  is the probability of the true class. The 

standard binary cross-entropy loss (BCE) is formulated as: 

𝐵𝐶𝐸(𝑝𝑡) =  − 𝑙og (𝑝𝑡)                                                      2 

The loss is small when the model predicts correctly with 

high confidence, and is large when the model predicts 

incorrectly. Therefore, focal loss modifies BCE algorithm 

by adding two factors to address the problem of 

imbalanced data. The factor α ∈ [0,1], which represents the 

class balancing factor for handling class imbalance 

explicitly by giving more weight to the minority class 

(chagas), and γ ≥ 0, which represents the focusing 

parameter, which controls how much to down-weight easy 

cases. 

𝐹𝐿(𝑝𝑡) =  − 𝛼 (1 − 𝑝𝑡)𝛾log (𝑝𝑡)                                       3 

For γ = 0, the FL reduces to BCE, and for γ larger than 0, 

it focuses more on hard or misclassified cases (Chagas 

class). Minority classes usually have low 𝑝𝑡 , so (1 − 𝑝𝑡)𝛾 

is large, making their loss contribution larger [8].  

2.3.  RF Classifier via Feature Extraction 

The ECGs were denoised using a bandpass filter (0.5 to 

50Hz). Time-series and morphological features were then 

extracted for training and evaluating purposes. A total of 

31 features were extracted Lead II (4 features from patient 

details and other features extracted using morphology and 

time intervals of P, QRS, and T waves of each ECG signal). 

Table 1 shows the feature names that are used in this 

method.  

 

Figure 1. The pipeline of the proposed methods 



3. Results 

Two methods were used to detect Chagas disease using 

ECG signals. The CNN model achieved the highest 

performance locally, with a challenge score of 0.45, an 

accuracy of 90.70%, an F-measure of 26.90%, an AUROC 

of 0.87, and an AUPRC of 0.223, as well as a challenge 

score of 0.258 on the official phase. In contrast, RF with a 

feature extraction method had lower performance locally, 

with a challenge score of 0.11 in the unofficial phase, an 

accuracy of 74.70%, an F-measure of 75.80%, an AUROC 

of 0.834, an AUPRC of 0.819, and an unofficial phase 

score of 0.11. Figure 2 shows the comparisons between the 

two methods locally. Table 2 illustrates the challenge score 

and the team rank for the official phase.  

 
Figure 2. Results of the two models 

Table 2. Official phase results for CNN model. 

Task       Score Rank 

Classification  Challenge score: 0.258 164/367 

 

4. Discussion and Conclusions 

This study compared two techniques (CNN and RF) in 

ECG feature extraction for chagas cardiomyopathy. The 

result demonstrates that CNN achieved a higher Challenge 

score (0.453 vs 0.110) and accuracy (0.907 vs 0.747) 

compared to RF though at a cost of longer training time 

(two weeks vs. one hour). this aligns with the Challenge 

primary objective of maximizing recall within the top 5% 

of predicted probabilities. This metric focuses on how 

many Chagas-positive cases are captured in the highest-

ranked predictions, simulating real-world constraints 

where only a small portion of patients can be tested. The 

CNN’s strong AUROC (0.874) further supports its ability 

to rank positive cases above negatives across the entire 

dataset. 

Our findings demonstrate the superior performance of 

CNNs in AUROC and accuracy, which is consistent with 

the proposal by Zubair et al. Zubair et al. proposed that 

CNNs are well-suited for ECG feature extraction due to 

their ability to learn hierarchical features from raw signals 

[9]. Similarly, Xu et al. have demonstrated 98% accuracy 

of deep residual networks in arrhythmia detection [10]. 

In contrast, we have shown RF’s competitive 

performance in F-measure, reflecting its strength in 

handling class imbalances and providing stable predictions 

across heterogeneous datasets. However, due to heavy 

dependence on heavily engineered features, it may not 

capture the temporal complexity of ECG signals as 

effectively as CNNs. Similar to our report, prior 

comparative studies have shown that CNN-based methods 

outperform traditional machine learning models, including 

RF, in ECG classification [11]. 

Although there is a dearth of studies specifically on 

using these models for Chagas diagnosis, our results show 

that the RF model displayed a much better ability to 

recognize positive cases overall. Its AUPRC of 0.819 and 

F-measure of 0.758 show that RF consistently identifies 

Chagas-positive patients and maintains a strong precision-

recall balance. Although its AUROC (0.834) was slightly 

lower than that of CNN, and its Challenge score (0.11) fell 

well below that of CNN, these results suggest that RF 

would be more effective in scenarios where more than 5% 

of patients can be tested or where a balanced approach to 

detection is required. 

Another key consideration is computational efficiency. 

The CNN required approximately two weeks to train. In 

Table 1. Features list extracted from ECG signals 

Patient details (4 features) P, QRS, T (15 features) Time intervals and polarity (12 features) 

Age, sex (3 features) 

P average maximum amplitude 

P average minimum amplitude 

P average amplitude range 

P average duration 

P average energy 

QRS average maximum amplitude 

QRS average minimum amplitude 

QRS average amplitude range 

QRS average duration 

QRS average energy 

T average maximum amplitude 

T average min amplitude 

T average amplitude range 

T average duration 

T average energy 

RR interval 

Heart rate 

PR interval 

QT interval 

QTC interval 

PR segment 

ST segment 

P presence 

T presence 

J wave presence 

P polarity 

T polarity 

 

 



contrast, the Random Forest completed training in about 

one hour, making RF a much more practical choice for 

rapid deployment and iterative development. 

In conclusion our findings have some limitations, the 

Challenge score represents performance only at the 

extreme top of the ranking, not across the entire probability 

spectrum. When broader performance metrics are 

considered, the CNN performed poorly in consistently 

identifying Chagas-positive cases outside the top 5%. Its 

AUPRC (0.223) and F-measure (0.269) are both very low, 

indicating that while the CNN assigns high probabilities 

when it does identify positives, it misses many others and 

struggles to balance precision and recall. 

The CNN is optimal for the Challenge because the 

evaluation metric emphasizes ranking positives in a tiny 

segment of the population. However, in real-world 

applications where the goal is to detect as many positive 

cases as possible across a broader range of thresholds, the 

Random Forest model may be the more reliable and 

efficient choice.  

These results are based on a controlled dataset within 

the data provided. When the CNN model is tested on the 

unseen dataset for the challenge, it performs worse in terms 

of the challenge score, indicating the need for further 

research into a more effective pipeline or model for 

classifying Chagas cases based on ECG. Future work could 

explore hybrid approaches or ranking-optimized learning 

methods that combine CNN’s strong top-tier ranking 

performance with RF’s ability to maintain precision and 

recall across the full distribution. 
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