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Abstract 

This study evaluates enhancements to the wave 

masking (WM) preprocessing technique for ECG signal 

reconstruction. It focused on different padding schemes 

and the role of temporal dependency (TD) while using a 

linear regression model. Three padding methods (zero 

(WMZ), boundary (WMB), and sigmoid (WMS)) were 

tested, both independently and in combination with TD 

(WM_TD). 

Across five ECG leads (V1, V2, V4, V5, V6), all 

methods showed similar average performance, with 

correlation coefficients (r) ranging from 0.887 to 0.895 

and RMSE between 0.161 and 0.166. The sigmoid 

padding method (WMS) consistently produced the most 

visually coherent ECG morphology. Importantly, the 

computational cost of WMS is comparable to WMZ (the 

initial scheme), enabling seamless adoption without 

altering system architecture. However, the best 

performance was achieved with the combined WM_TD 

approach, which yielded an average r of 0.895 and RMSE 

of 0.161. 

WMS is chosen as the go-to WM technique as it has 

similar results to other techniques but the best 

morphological output. The study highlights how subtle 

preprocessing choices (like padding type) can lead to 

meaningful improvements in morphology, guiding future 

research in biomedical signal reconstruction. 

 

 

1. Introduction 

Reconstruction of electrocardiogram (ECG) signals 

involves synthesizing specific leads from a new lead 

configuration or a subset of existing leads. This need 

commonly arises due to noise contamination during 

recording, lead misplacement, or the design of compact 

embedded systems aimed at reducing the number of 

electrodes required. While numerous models have been 

developed for ECG reconstruction with promising results, 

it is important to acknowledge that further progress may 

lie not only in creating increasingly complex models, but 

also in rethinking and optimizing the preprocessing of the 

available signals. Enhancing preprocessing techniques 

can significantly improve reconstruction accuracy while 

maintaining model simplicity and efficiency. 

Masking and temporal dependency (TD) are well 

established modelling techniques for designing prediction 

models in deep learning (DL) environments [1, 2]. 

Masking is a technique in image recognition used for 

highlighting specific regions of an input image, thereby 

enhancing the model’s ability to recognize or predict 

certain images or features. Similarly, TD addresses the 

sequential relationship within time-series data, enabling 

models to capture dependencies across time steps. This is 

particularly relevant for data that have trend features 

within them like ECG. 

Recent works have shown that these concepts which 

were usually reserved for DL algorithms could be useful 

in reconstructing 12-lead ECG while using linear 

algorithms [3, 4]. These works adapted these techniques 

to linear regression and showed that these adaptations 

improved the performance of the models. Their model 

showed comparable performance to DL models at a 

reduced computational requirement. However, the 

adapted method (wave masking – WM) masked the ECG 

signal with zeros (zero-padding). This masking scheme 

introduced a sharp transition in the signal where the ECG 

was masked. [4] considered the possibility that a different 

padding scheme might improve the performance of the 

model. 

This insight has led to the considerations of using 

either the baseline of the ECG (baseline-padding), a 

sigmoid (sigmoid-padding), or a hybrid of these and TD 

to mitigate the abrupt changes introduced by zero-

padding. This study aims to evaluate the performance of 

LR models in ECG reconstruction using various WM and 

TD variants and hybrid approaches. The preprocessing 

techniques analysed include 

1. WM with zero-padding (WMZ). 

2. WM with sigmoid function padding (WMS). 

3. WM with signal baseline padding (WMB). 

4. Incorporating temporal dependency (TD). 

5. Hybrid of WM and TD (WM_TD). 



 

2. Method 

2.1. Dataset 

The dataset employed in this study comprises 4,250 

records, randomly selected from the CODE-15% dataset 

[5], based on specific inclusion criteria outlined in the 

accompanying metadata. The selection ensured each ECG 

came from a unique patient, was classified as normal, 

showed no monitored heart conditions, and had no 

missing leads.  

Following selection, the ECG records were 

standardized to a duration of 10 seconds, resampled to 

500 Hz, and subsequently denoised, delineated and their 

baseline extracted using the ECGdeli MATLAB toolbox 

[6]. They were denoised using standard filters and 

thresholds: high pass filter of 0.3Hz, low pass filter of 

120Hz and notch filter of 60Hz. It is paramount to note 

that delineation was done using only leads I, II, and V3 as 

recommended by Butchy, Jain, Leasure, Covalesky and 

Mintz [7], and these leads will be the input leads for 

reconstruction. 

For each preprocessing pipeline, 3,500 records were 

used for training the models, while 750 records were 

reserved for testing, ensuring consistency and 

reproducibility across all experiments. 
 

2.2. Pipelines 

    Every pipeline designed in this work follows the 

base linear model pipeline. This model states that a 

dependent variable is equal to the sum of the scaled 

version of one or more independent variables and a 

shifting constant. For the work done here, the dependent 

variable are leads V1, V2, V4, V5, and V6. This can be 

described mathematically as. 
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𝑖𝑛 𝑤𝑜𝑟𝑑𝑠:  
𝐴 = 5 𝑏𝑦 𝑞 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡𝑠  
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𝐶 = 5 𝑏𝑦 1 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

𝑉 = 5 𝑏𝑦 1 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 

 

Eqn1 describes the relationship between the input 

variables and the ECG leads being simulated. V includes 

the potentials of the simulated leads at a given point in 

time. X are the input values needed to calculate the value 

of V. Depending on the pipeline chosen, X could range 

from ECG leads to including augmented values. A are the 

scaling values for X for every value of V. Finally, C are 

the shifting constants for every value of V. Every pipeline 

designed here considers the implications of using diverse 

X values to reduce the error between V and its expected 

(original) value. 

 

2.2.1. Wave Masking Pipeline 

Wave masking (WM), which is adapted from masking 

in image recognition highlights specific regions of an 

input signal by obscuring the unneeded regions. In ECG 

reconstruction this includes masking other parts of the 

ECG to point out the component waves including P wave, 

T wave, and QRS [4]. 

The specific pipeline used here was to extract each 

component waves from the leads they are expressed 

prominently between leads I, II, and V3. T wave, P wave, 

and QRS were extracted from leads I, II, and V3 

respectively, by wave masking other parts of the signal. 

These component waves, in conjunction to the leads they 

were extracted from were used as the input value to the 

linear model. This is mathematically presented in eqn2. 

𝑋 =

[
 
 
 
 
 
𝐿𝑒𝑎𝑑 𝐼
𝐿𝑒𝑎𝑑 𝐼𝐼

𝑉3

𝑇 𝑤𝑎𝑣𝑒
𝑃 𝑤𝑎𝑣𝑒
𝑄𝑅𝑆 ]

 
 
 
 
 

   …     𝑒𝑞𝑛2 

The initial design of this method used zero-padding 

masking scheme. This involved masking the unneeded 

portions of the signal with zeros. This introduced sharp 

transitions. Therefore, this paper has explored the 

possibility of masking with a sigmoid or the baseline of 

the signal itself. 

 

 
Figure 1. Different padding wave masking approaches 

performed on masking the QRS and P wave. 

 

2.2.2. Temporal Dependency Pipeline 



Temporal dependency involves using the past samples 

to predict the next sample. This is adapted from recurrent 

neural networks (RNNs) [3]. Using past samples allows 

the model to seemingly retain short-term memory. That 

way, predictions can be made by considering the effect of 

the past values. This was adapted to the linear regression 

model to give the same effect. After tuning, it was found 

that the goldilocks sample length is 100 samples for a 

500Hz ECG signal. Since the input leads to the model are 

leads I, II, and V3; for every value of this lead being used 

to predict V, there are 99 past samples used in 

conjunction. This is mathematically shown in eqn3. 
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   …     𝑒𝑞𝑛3 

𝑤ℎ𝑒𝑟𝑒 𝑛 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑒𝑖𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 

2.2.3. Hybrid Pipeline 

This pipeline is the combination of the best performing 

WMZ technique and TD. It includes the extraction of the 

component waves from the signal and the inclusion of 

past samples as variables. This pipeline aims to combine 

the strengths of the former two pipelines. 
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   …     𝑒𝑞𝑛4 

𝑤ℎ𝑒𝑟𝑒 𝑛 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑒𝑖𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 

3. Results 

The wave masking pipelines demonstrated consistent 

performance across different padding schemes, as shown 

in Table 1. On average, the three variations (WMZ, 

WMB, and WMS) produced similar results in terms of 

correlation and RMSE, suggesting that the choice of 

padding had minimal impact on quantitative 

reconstruction accuracy. 

However, visual inspection of the reconstructed signals 

in Figure 2 reveals subtle yet meaningful differences. 

Among the three, WMS produced the smoothest and most 

physiologically coherent reconstructions, with fewer 

sharp transitions or discontinuities in the waveform. In 

contrast, WMZ and WMB exhibited more abrupt changes 

in the signal morphology, likely due to the artifacts 

introduced at the masked regions by their respective 

padding strategies.  

In comparison, the TD model performed worse overall 

than the WM pipelines, indicating that simply leveraging 

temporal relationships in the signal was less effective 

than emphasizing waveform structure through masking. 

Interestingly, the combined approach (WM_TD) yielded 

slightly improved average performance metrics compared 

to the standalone WM or TD models. This suggests that 

integrating both wave masking and temporal 

dependencies offers complementary benefits. 

Nonetheless, visual analysis still favoured WMS, which 

retained the smoothest and most stable signal 

morphology. 

 

 
Figure 2. Visual reconstruction of the lead V5 using the 



different pipelines. 

 

4. Discussion and Conclusion 

This paper focused on evaluating new approaches for 

implementing the wave masking (WM) preprocessing 

technique and explored the role of temporal dependency 

(TD) in improving ECG reconstruction using linear 

regression. The study examined both TD as a standalone 

method and in combination with wave masking 

(WM_TD). The results showed comparable performance 

across all wave masking padding schemes; however, 

sigmoid padding produced the most visually coherent 

ECG morphology. 

In ECG interpretation, signal morphology is of 

paramount importance. Accurate reconstruction of 

waveform shape is essential for clinical reliability, and 

the findings indicate that sigmoid padding in the WM 

pipeline best preserves this morphology. Given that the 

computational requirements of sigmoid padding are like 

those of zero padding, it can be adopted as a preferred 

alternative without requiring changes to the underlying 

system architecture. 

It is important to note that this analysis was conducted 

exclusively on normal ECG data from the CODE-15% 

dataset. Further evaluation is necessary using more 

diverse datasets that include varied populations and 

abnormal heart conditions to validate the generalisability 

of the findings and the robustness of the wave masking 

and sigmoid padding approach. 

Additionally, while the study applied wave masking 

within a linear regression framework, future work should 

explore its use with a variety of machine learning and 

deep learning models. This would determine whether the 

technique can consistently enhance model performance 

without increasing complexity, particularly in systems 

where low latency, simplicity, and efficiency are 

important, such as in wearable or embedded health 

devices. 

Finally, this research highlights a broader insight: 

subtle design choices in preprocessing (such as the type 

of padding or activation function) can lead to significant 

perceptual and diagnostic improvements in signal 

reconstruction. This opens further research opportunities 

in adapting and optimizing these techniques for ECG 

reconstruction and other time-series and biomedical 

signal processing applications.  
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Table 1. Average correlation (r) and RMSE of the reconstructed leads using various pipelines. 

 Pipeline ➔ WMZ WMB WMS TD WM_TD 

Leads  r RMSE r RMSE r RMSE r RMSE r RMSE 

V1 0.869 0.129 0.869 0.130 0.868 0.130 0.871 0.129 0.875 0.125 

V2 0.837 0.198 0.839 0.198 0.840 0.197 0.831 0.199 0.854 0.192 

V4 0.900 0.176 0.900 0.175 0.900 0.175 0.898 0.178 0.901 0.174 

V5 0.921 0.173 0.922 0.173 0.921 0.173 0.916 0.177 0.922 0.171 

V6 0.927 0.143 0.928 0.143 0.928 0.143 0.919 0.149 0.924 0.144 

Average 0.891 0.164 0.892 0.164 0.891 0.164 0.887 0.166 0.895 0.161 
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