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Abstract 

The forward problem in electrocardiology, computing 
body surface potentials from cardiac electrical activity, is 
traditionally solved using physics-based models such as 
the bidomain or monodomain equations. While accurate, 
these approaches are computationally expensive, limiting 
their use in real-time and large-scale clinical 
applications. We propose a proof-of-concept deep 
learning (DL) framework as an efficient surrogate for 
forward solvers. The model adopts a time-dependent, 
attention-based sequence-to-sequence architecture to 
predict electrocardiogram (ECG) signals from cardiac 
voltage propagation maps. A hybrid loss combining 
Huber loss with a spectral entropy term was introduced 
to preserve both temporal and frequency-domain fidelity. 
Using 2D tissue simulations incorporating healthy, 
fibrotic, and gap junction–remodelled conditions, the 
model achieved high accuracy (mean R² = 0.99 ± 0.005). 
Ablation studies confirmed the contributions of 
convolutional encoders, time-aware attention, and 
spectral entropy loss. These findings highlight DL as a 
scalable, cost-effective alternative to physics-based 
solvers, with potential for clinical and digital twin 
applications. 

 
1. Introduction 

The forward problem in electrocardiology, evaluating 
body surface potentials from cardiac electrical activity, is 
traditionally addressed using physics-based models, such 
as the Bidomain model, typically solved via the finite 
element method[1, 2]. While these approaches are known 
for their relative effectiveness, they are computationally 
intensive. Limiting their practicality in time-sensitive or 
large-scale clinical applications. Recent research has 
leveraged these models to calibrate patient-specific 
simulations using electrocardiogram (ECG) data, thereby 
enhancing the personalisation of cardiac digital twins [3]. 
However, widespread clinical adoption necessitates more 
scalable and computationally efficient alternatives. 
Beyond personalisation, solving the forward problem has 

been applied in guiding therapeutic interventions. 
Krummen et al. have generated a library of cardiac tissue 
electrical simulations with corresponding ECGs to 
localise arrhythmic sites of origin in both atrial and 
ventricular cases based on 12-lead ECG data [4].  
 
This demonstrates the dual utility of solving the forward 
problem: (i) facilitating routine clinical deployment, and 
(ii) enabling the development of large-scale simulation 
libraries to support targeted treatments. To address these 
needs, deep learning (DL) could be a promising approach, 
offering significant reductions in computational burden. 
In this study, we present a proof-of-concept DL 
framework for the forward problem in electrocardiology. 
Specifically, we introduce a time-dependent, attention-
based sequence-to-sequence model designed to predict 
ECG signals from sequences of 2D cardiac voltage 
propagation maps. The proposed approach is intended to 
provide a cost-effective and scalable surrogate to 
conventional forward problem solvers. 
 
2. Methods 

2.1. 2D simulation 

A dataset of 300 2D tissue models was generated and 
used to simulate cardiac electrical activity by solving the 
monodomain equation with an atrial variant of the 
Fenton-Karma cell model [5]. Cardiomyopathy was 
modelled as a variable distribution of non-conductive 
fibrotic tissue, with different diffusion coefficients (D) 
representing tissue conductivity. Four distinct tissue types 
were simulated: 60 healthy cases (D = 0.10–0.09 mm²s-1) 
with small non-conductive tissue patches; 60 gap 
junctional remodelling cases (D = 0.09–0.01 mm²s-1); 120 
fibrotic remodelling cases with large non-conductive 
patches; and 60 combined remodelling cases. To compute 
extracellular potential (ECG) signals for each simulation, 
the following equation was used: 
 

𝜙! =	$
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𝑑𝒓 (1) 



Where 𝜙! is the extracellular potential at the observation 
point 𝒓!, 𝑉" is the transmembrane potential, 𝑫 is the 
diffusion coefficient and 𝒓 is the spatial coordinates of 
cardiac tissue domain [6]. The electrode was positioned at 
spatial coordinates (50, 50, 40) mm, defined relative to 
the origin located at the top-left corner of the square 
tissue domain. 

 
2.2. Model 

The proposed deep‐learning framework employs a 
sequence‐to‐sequence architecture: comprising an 
encoder, an attention mechanism and a decoder to 
translate a series of voltage propagation maps into an 
output signal (Figure 1). Each input map 𝑥#	𝜖	ℝ$×&×' is 
processed by the encoder, a two‐block convolutional 
network with batch normalisation, ReLU activations, 
pooling and dropout, followed by adaptive pooling, 
flattening and a fully connected layer to yield a latent 
vector 𝑙#	𝜖	ℝ(×)*++!,	.*/!. These latent representations 
𝐿 = 	 {𝑙0, 𝑙1, … , 𝑙#}	are then weighted by the attention 
module and decoded into the final output. 
 
The attention mechanism uses Bahdanau additive 
attention enhanced with sinusoidal time embeddings to 
produce a context vector 𝑐#. At each decoding step 𝑡, 
attention weights 𝑎#,* are computed from the current 
decoder state ℎ#, each latent vector 𝑙*, and its time 
embedding 𝑒𝑖𝑎 (Equation 2) [7]. By integrating explicit 
temporal information, this time-aware attention lets the 
model prioritise latent vectors according to both their 
voltage content and their time steps, thereby 
strengthening its capture of sequential dependencies in 
the forward electrocardiology task. 
 

𝑎#,* =	𝑉56 tanh?𝑊5ℎ# +	𝑈5(𝑙* ∥ 	𝑒𝑖𝑎)E (2) 

 
𝑊5, 𝑈5 and 𝑉5 represent learned attention parameters, and 
∥ indicates concatenation. Attention weights, 𝛼, are then 
evaluated by applying the SoftMax function to the 
attention scores 𝑎, were 𝛼#,* ∈ [0,1]. Finally, the context 
vector, 𝑐#, is computed as the weighted sum of the 𝐿 with 
weights 𝛼 (Equation 3).  
 

𝑐# =	M𝛼#,*𝑙*
*

,						𝑤ℎ𝑒𝑟𝑒		𝑐#	𝜖	ℝ)*++!,	.*/! (3) 

 
At each decoding step, the long short-term memory 
(LSTM) decoder receives the previous hidden and cell 
states, along with a concatenated input consisting of the 
attention-derived context (𝑐#), the encoder’s latent vector 
at the current time step (𝑙#), and a sinusoidal time 
embedding (𝑒#+) indicating the output index. The LSTM 
output is then combined with the previous ECG 

prediction and passed through two linear layers to 
produce the next ECG value. This structure enables the 
model to generate temporally consistent predictions while 
explicitly leveraging both input and output timing 
information. 
 

 
Figure 1. Schematic DL model architecture from series 
of 2D wave propagation maps to ECG prediction. Solid 
lines show static data flow, and dashed lines show 
recurrent data flow. 

 
2.3. Model Training and Evaluation 

To train the model, we introduce a novel loss function 
that jointly minimises differences in both the time and 
frequency domains. Frequency-domain differences are 
captured using a spectral entropy loss, which encourages 
preservation of the signal’s spectral complexity. Given a 
ground truth ECG signal 𝑦* 	 ∈ 	ℝ( and a predicted signal 



𝑦7Q 	∈ 	ℝ(, where 𝑖 indexes samples in a batch of size 𝐵, 
we compute the power spectral density (PSD) for each 
signal 𝑠	𝜖	{𝑦7Q, 𝑦*}, denoted 𝑃.(𝑓)	𝜖	ℝ(. The PSD is 
normalised into a probability distribution by dividing 
each spectral component by the total power across all 
frequencies, such that 𝑃.W(𝑓) 	∈ [0,1]. The spectral entropy 
of the signal is then computed as the Shannon entropy of 
this distribution,	 𝐸8(𝑠), where 𝜀 is a small constant for 
numerical stability[8]: 
 

𝐸8(𝑠) = −M𝑃.W(𝑓) log1]𝑃.W(𝑓) + 	𝜀^
9

 (4) 

 
The spectral entropy loss, ℒ8:, is then defined as the 
mean squared error between the spectral entropies of the 
predicted and ground truth signals (Equation 5). This term 
encourages the model to preserve the spectral 
characteristics of the true ECG tissue. 
 

ℒ8: =	
1
𝐵M?𝐸8]𝑦𝑖^ − 𝐸8]𝑦𝑖Q^E

1
;

*<0

 (5) 

 
To also ensure morphological accuracy in the time 
domain, we include a Huber loss term, ℒ&, which 
combines the robustness of mean absolute error with the 
smoothness of mean squared error. Hence, total loss, 
ℒ#=#5>, is a weighted sum of ℒ& and ℒ8:: 
 

ℒ#=#5> =	ℒ𝐻 + 	𝜔(𝑛) ∙ 	ℒ8: 		 (6) 
 
The weight function for spectral entropy loss term, 𝜔(𝑛), 
is defined by a cosine decay schedule, where 𝑛 is the 
current epoch and 𝐸 is the total number of training 
epochs.  
 

𝜔(𝑛) = 	
1
2?1 +	cos ?

𝜋𝑛
𝐸 EE (7) 

 
This schedule emphasises spectral differences in the early 
stages of training and gradually shifts focus to time-
domain accuracy, allowing for initial spectral 
regularisation without constraining final optimisation. 
The dataset was split into training (80%, 240 subjects), 
validation (10%, 30 subjects), and test (10%, 30 subjects) 
sets, with class distributions balanced across all splits. 
The model was trained for 200 epochs using the Adam 
optimiSer with an initial learning rate of 0.001, which 
was halved if the validation loss plateaued for five 
consecutive epochs. The model state with the highest 
validation R2 score was selected as the best model.  
 
3. Results 

Our model closely matched the ground truth (Figure. 2), 

achieving a mean R² of 0.99 ± 0.005 on the hold-out test 
set.   
 

 
 
Figure 2. Test set example of predicted ECG (red dashed 
line) and ground truth (black line) on z-score normalised 
scale. 
 
Performing a model ablation study (Figure 2) revealed 
that removing any model component reduced 
performance. While excluding the spectral entropy loss 
did not significantly impact results for fibrotic or gap 
junction-remodelled tissue (p < 0.05), it improved R² and 
MAE in healthy tissue. This indicates that the spectral 
entropy loss specifically enhances accuracy in 
homogeneous tissue, even when the training set is 
dominated by heterogeneous cases. Note in experiments 
with no convolutional neural network (CNN), the mean 
voltage was evaluated as the surrogate for encoder latent 
space vector.  
 

 

Figure 3. Bar charts of R2 score and mean absolute error 
of the ablation experiments of model components and 
loss function across all tissue conditions in the test set.  
 
4. Discussion 

This study investigates the application of DL to solve the 
forward problem in electrocardiology. Our results 



demonstrate strong agreement between DL predictions 
and in-silico ground truth on two-dimensional voltage 
propagation data. The proposed DL model employs an 
encoder–decoder architecture that leverages attention 
mechanisms and time embeddings to capture temporal 
dynamics, alongside a CNN to learn spatial relationships. 
We further introduce a novel application of spectral 
entropy loss function, which enhances the model’s 
predictive performance under both homogeneous and 
inhomogeneous tissue conditions. To the best of our 
knowledge, this is the first study to apply DL to this 
specific problem. Overall, our findings highlight that DL 
can effectively map voltage propagation patterns to 
extracellular signals. The key advantage of this approach 
lies in the reduced computational cost and the parallel 
processing capabilities of DL, which could improve the 
efficiency of technologies relying on forward solutions, 
such as cardiac digital twin calibration and 
electrocardiographic imaging. A potential future direction 
is to train the model directly on experimental data. 
Traditionally, it has been assumed that achieving an 
accurate forward solution requires incorporating 
inhomogeneities into the calculations, as in the bidomain 
model. However, Bear et al. demonstrated that including 
torso inhomogeneities reduced the forward solution error 
compared to a homogeneous torso solution (the ground 
truth in our study) but did not fully resolve discrepancies 
when compared to measured body surface potentials [9]. 
A potential future direction of this research is to 
investigate whether a DL-based approach, when trained 
solely on experimental data, could surpass the accuracy of 
the current state-of-the-art forward solution based on the 
bidomain equation. Which in turn can improve accuracy 
of inverse solution, as the forward problem is integral to 
the current solution [10–12]. Future research should also 
explore extending this work to three-dimensional, patient-
specific cardiac geometries, as well as predicting ECGs 
from bidomain simulations or experimental data to assess 
model performance in capturing signals from 
inhomogeneous torsos.  
 
5. Conclusion 

This study shows that DL can accurately solve the 
forward problem in electrocardiology, matching in-silico 
ground truth from 2D voltage propagation. Our encoder–
decoder model, enhanced with attention, time 
embeddings, and a spectral entropy loss, performed well 
in both homogeneous and inhomogeneous tissue. These 
results position DL as a promising alternative to physics-
based solvers. 
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