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Abstract 

Finite-element-based simulations of cardiac 

electromechanics, though accurate, remain prohibitively 

computationally expensive, often requiring hours per beat 

using high-performance computing resources. We present 

a deep learning-based emulator leveraging E(3) 

equivariant graph neural networks (GNNs) to approximate 

cardiac passive mechanics, enabling fast and 

generalizable predictions of myocardial deformations. 

Our architecture encodes both geometric and 

physiological features in an E(3)-equivariant form and 

introduces a multi-resolution graph augmentation strategy 

to model long-range dependencies. The proposed method 

achieves substantial acceleration while maintaining good 

accuracy. 

 

 

1. Introduction 

Simulating the human heart’s electromechanics using 

finite-element methods requires several hours per beat on 

a supercomputer. A graph neural network (GNN) model 

trained on simulated data can approximate the cardiac 

passive mechanics and speed up these calculations [1]. 

However, the machine learning model must be E(3) 

equivariant to generalise to different geometries. Here, we 

propose an E(3) equivariant extension of [1]. 

 

2. Methods 

Our GNN model takes as input the resting biventricular 

geometry as a graph 𝐺 and its fibre orientations, which are 

represented using ventricular coordinates [2] combined 

with the strategies in [3] to achieve E(3) equivariance. The 

model then predicts the node-wise displacements produced 

by the passive mechanics of the diastolic filling phase.  

 

2.1. E(3) Invariant Inputs  

The cardiac passive mechanics simulation problem is 

equivariant to rotations, translations and reflections. To 

enforce these equivariances, we use an E(3) invariant 

representation of the input data. The inputs that were not 

equivariant in their original representation were the node 

coordinates and the fibre orientations. The GNN 

automatically provides an invariant embedding for the 

node coordinates, thus leaving only the fibre orientations. 

To generate an invariant representation of the feature 

vectors (i.e., fibre orientations), [4] proposes to project 

each vector on a local basis defined for each edge by Bi,j =

(ai,j⃗⃗ ⃗⃗  , bi,j
⃗⃗⃗⃗  ⃗, ci,j⃗⃗ ⃗⃗  ). Such that: 

𝑎𝑖,𝑗⃗⃗ ⃗⃗  ⃗ = 𝑥𝑖⃗⃗⃗  − 𝑥𝑗⃗⃗⃗   

𝑏𝑖,𝑗
⃗⃗ ⃗⃗  ⃗ =

𝑥𝑖⃗⃗⃗  × 𝑥𝑗⃗⃗⃗  

||𝑥𝑖⃗⃗⃗  × 𝑥𝑗⃗⃗⃗  ||
 

𝑐𝑖,𝑗⃗⃗⃗⃗  ⃗ = 𝑎𝑖.𝑗⃗⃗ ⃗⃗  ⃗ × 𝑏𝑖,𝑗
⃗⃗ ⃗⃗  ⃗ 

 

This gives us a way to create local basis vectors that are 

equivariant regarding rotations but not translations. We 

extend this idea by using ventricular coordinates [2] to 

compute invariant local bases. In particular, we use the 

apex-to-base and transmural coordinates, and their cross-

product. Then, we project the fibre orientations on these 

local basis vectors to obtain an invariant embedding. 

We also include the ventricular coordinates as features 

to help the GNN interpret the projected fibre vectors. This 

leads to the embedding of the following 28 features: 

• Four node-wise ventricular coordinates. 

• Three invariant vectors: fibre, sheet and sheet-

normal directions.  

• Four node-wise Boolean masks to identify 

nodes on the boundaries of the geometry: RV-

endocardium, LV-endocardium, epicardial, 

and valve. 

• Eleven graph-wise parameters from the 

passive mechanics formulation. 

 

2.2. GNN Architecture 

We propose a message-passing GNN architecture 

composed of a "Features Embedding" (Linear) layer 

followed by 𝑘 "Equivariant Layers". 



 
 

Figure 1. Model architecture schematic. 

 

 

2.3 E(3) Equivariant Layers 

Our approach extends the GNN strategy from [1] to 

make the machine learning model E(3) equivariant. To this 

end, we implement the layering in Figure 2 [3],  combined 

with a novel E(3) invariant data representation. 

 

 
 

Figure 2. E(3) Equivariant layer architecture. 

 

 

Edge-wise directed messages 𝑚𝑖𝑗
𝑙  are computed from 

invariant features and edge attributes: 

𝑚𝑖𝑗
𝑙 = ϕ𝑚

𝑙 (ℎ𝑖
𝑙 , ℎ𝑗

𝑙 , ||𝑥𝑖
𝑙⃗⃗  ⃗ − 𝑥𝑗

𝑙⃗⃗  ⃗||) 

 

Here 𝑚𝑖𝑗
𝑙  is the directed message from node 𝑖 to node 𝑗 

at the 𝑙-th Equivariant layer in the GNN, ℎ𝑖
𝑙  are the features 

of node 𝑖, 𝑥𝑖
𝑙⃗⃗  ⃗ is the coordinates of node 𝑖 at the 𝑙-th 

Equivariant layer in the GNN, and 𝜙𝑚
𝑙 , 𝜙𝑐

𝑙  and 𝜙𝑛
𝑙   are 

Linear layers corresponding respectively to the message, 

coordinate and node layers. 

 

The coordinates of each node 𝑖 update as a weighted 

sum over the messages of their adjacent nodes 𝑗 ∈ 𝒜(𝑖): 

𝑥𝑖
𝑙+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑖

𝑙⃗⃗  ⃗ +
1

#𝒜(𝑖)
∑ (𝑥𝑖

𝑙⃗⃗  ⃗ − 𝑥𝑗
𝑙⃗⃗  ⃗) ϕ𝑐

𝑙 (𝑚𝑖𝑗
𝑙 )

𝑗∈𝒜(𝑖)

 

 

Node embeddings ℎ𝑖
𝑙  are updated using the aggregated 

messages of each node 𝑖: 

hi
l+1 = ϕn

l (hi
l, 𝑚𝑖

𝑙 =
1

#𝒜(𝑖)
∑ 𝑚𝑖𝑗

𝑙

𝑗∈𝒜(𝑖)

) 

 

 

3. Experiments and Results 

We trained the GNNs on finite element method 

simulated deformation fields using fixed and varying 

pressure conditions. Loss was computed via mean squared 

error (MSE) between predicted and simulated node-wise 

displacements. 

Training used various combinations of layers, hidden 

dimensions, graph augmentations, and dropout 

regularisation. Evaluation includes both absolute and 

relative errors normalised by maximal node displacement. 

We repeated each experiment ten times with different 

initialisations and preserved the best three for the results. 

 

3.1 Expressivity of the GNN 

This experiment aims to choose a configuration capable 

of representing the output displacements as a function of 

the inputs. To do this, we simultaneously vary both the 

hidden dimensions and depth of the model and evaluate the 

training error over a single input-output case. 

 



 
Figure 3. Model loss as a function of hidden dimensions of 

the model for a single geometry. The three model losses 

(y-axis) obtained for the overfitting (expressivity analysis) 

cases for each set of depth (x-axis) and hidden dimension 

(legend) of the hidden layers. 

 

The GNNs with a hidden dimension of 32 neurons and 

a depth of 8 layers (Figure 3) accurately learned 

deformations from a single simulation, achieving final 

MSE values of 0.013 cm. This loss was significantly lower 

compared to the loss obtained between the initial geometry 

and target geometry, 0.036 cm.  

Local deformations were well-captured overall (Figure 

4). However, their accuracy degraded near the basal plane 

due to changes in boundary conditions and material 

properties in those regions. From here on, we proceed with 

this GNN architecture composed of 8 hidden layers of 32 

neurons. 

 

 
Figure 4. Relative displacement error = |𝑑 − 𝑑’|/𝑑, where 

𝑑 and 𝑑’ are the true and predicted displacement values for 

the base architecture with hidden dimension 32 and depth 

8 on a single geometry for the overfitting case. The 

colorbar shows the error normalised by the maximal 

displacement. Coordinates are displayed in centimetres. 

 

 

 

3.2 Effect of Graph Augmentation 

Graph augmentation, similar to [1], with two coarsening 

levels (e.g., [1000, 20] nodes) improved training stability, 

particularly in shallow models (Figure 5). These results 

supported the hypothesis that augmenting the message-

passing structure enables more effective long-range 

communication. From here on, we proceed with the GNN 

with graph augmentation [1000, 20]. 

 

 
Figure 5. Model loss as a function of the augmentation 

parameters for a single geometry. The three model losses 

(y-axis) obtained for the overfitting (expressivity analysis) 

case for each set of augmentation strategies (x-axis). 

 

 

3.3 Learning Changes in Pressure 

With increments in the internal pressure ranging from 0 

to 3 kPa, the model generalised reasonably well across 

simulations (Figure 6). Incorporating pressure features as 

node-wise inputs helped encode the global state. 

 

 
Figure 6. Relative training error (normalised by the 

maximal displacement) from experiment training with 

varying internal pressure. Coordinates are in centimetres. 

 



3.4 Regularisation Strategies 

Adding dropout improved robustness at the expense of 

accuracy during training (Figure 7).  

 

 
Figure 7. Model loss as a function of the dropout ratio on 

a set of samples with various internal pressures. The three 

model losses (y-axis) obtained for each value of dropout 

ratio (x-axis). 

 

 

5. Discussion 

We tested the training capacity and prediction cost of 

various GNNs on one geometry to emulate cardiac passive 

mechanics. The GNNs predicted the passive deformations 

in ~5 seconds on a desktop machine, resulting in a speed-

up of 3 orders of magnitude compared to the finite-element 

methods solver used for generating the training data.  

Our results have also illustrated the advantages and 

limitations of GNNs for accelerating passive cardiac 

mechanics simulations with homogeneous tissue 

properties. 

We have also shown that implementing strategies as 

graph augmentation and regularisation can improve the 

stability of the training of GNNs.  

We observed high correlations on the prediction errors 

in regions with discontinuities in the description of the 

problem, such as different material and contractile 

properties (i.e., the valvular plugs), as well as changing 

boundary conditions (i.e., the base-to-valves region). More 

sophisticated strategies for graph augmentation that 

consider regional discontinuities could potentially improve 

the model’s predictions. These errors may relate to 

limitations of the reference finite element method 

formulation in replicating physiological behaviour in these 

regions. New strategies to represent these discontinuities 

comprehensively could improve the model’s predictions. 

While our model uses a single geometry with varying 

pressures, generalising to different cardiac anatomies, 

material properties, and boundary conditions remains 

future work. Additional improvements could involve using 

a different representation for the boundary conditions and 

incorporating physics-informed losses. 

 

6.  Conclusions 

We presented a symmetry-aware deep learning 

framework for emulating cardiac passive mechanics. By 

combining GNNs with cardiac coordinate-based E(3) 

invariant embeddings and hierarchical graph 

augmentations, our model replicates FE simulations with 

high accuracy and reduced compute time. This offers a 

promising path toward scalable cardiac digital twins. 
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