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Abstract

Large-scale ECG preliminary screening can efficiently
identify high-risk individuals for targeted confirmatory
testing, combating the widespread under-diagnosis of
Chagas disease due to limited serological test coverage. It
is this potential that provides the fundamental motivation
for developing automated ECG screening. We developed
a computational approach to detect Chagas disease from
electrocardiograms (ECGs). Our team, CinCo Amigos, de-
veloped a two-stage domain-adversarial training process
to address the key issues of significant label noise, extreme
class imbalance, and substantial domain shift.

Our two-stage framework first pre-trains a custom con-
volutional neural network on a large, noisy dataset. We
integrate Early Learning Regularization (ELR) to mitigate
label errors and a Domain-Adversarial Neural Network
(DANN) to encourage domain-invariant features. To han-
dle class imbalance, we employ LMFLoss, a composite
objective combining Focal Loss and Label-Distribution-
Aware Margin (LDAM) Loss. In the second stage, the
model is fine-tuned on high-quality datasets using feature
distillation to retain generalisable features.

Our model achieved a Challenge score of 0.338 on the
validation set. Our official Challenge score was – (ranked
– out of – teams) on the hidden test set. This work suggests
that our integrated approach provides a robust framework
for automated ECG-based diagnosis and can improve gen-
eralisation in challenging real-world scenarios.

1. Introduction

This paper details our entry for the 2025 George B.
Moody PhysioNet Challenge, which focused on the devel-
opment of automated, open-source algorithms for detect-
ing Chagas disease from electrocardiograms (ECG) [1, 2].
Training data for this work were made available through
the challenge from several distinct collections [3–5].

The primary difficulties of this task are: significant label

noise, as the largest dataset has unreliable, self-reported la-
bels (CODE15) while smaller datasets provide reliable an-
notations; an extreme class imbalance with positive cases
accounting for only 2% of the data; and a significant do-
main shift, evidenced by a stark performance drop between
internal testing versus public scoring metrics.

To address these, we developed an approach that com-
bines a customised convolutional neural network with
noise-robust learning, domain-adversarial techniques, and
advanced class-imbalance handling.

2. Methods

Our approach begins with robust data preprocessing and
augmentation, followed by training a novel model archi-
tecture designed for ECG analysis. The training strat-
egy first involves pre-training on a large, noisy dataset to
learn generalisable features, and subsequently fine-tuning
on smaller, high-quality datasets to specialise the model
for Chagas disease detection.

2.1. Data Preprocessing

All 12-lead ECG signals were resampled to 500 Hz, and
filtered with a bandpass filter (1 Hz - 30 Hz) to remove
baseline wander and high-frequency noise, and notch fil-
ters at 50 Hz and 60 Hz to eliminate powerline interfer-
ence. Finally, each recording underwent z-score normali-
sation to standardise the signal distribution.

To improve generalisation and robustness to dataset
variability, we applied a diverse set of augmentation meth-
ods during training. These included adding Gaussian
noise, random scaling, random temporal shifting, random
dropping and cutting out of signal segments, lead mixing
[6], and time warping.

2.2. Model Architecture

Our model adopts a modular architecture composed of
a unified encoder and two parallel classifier heads, as de-
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Figure 1. Architecture of the proposed network. The uni-
fied encoder, comprising the ECGNeXt and Meta Net, pro-
duces a shared feature representation. This representation
is then fed into two separate heads: a task classifier for
Chagas disease prediction and a domain classifier for ad-
versarial training.

picted in Fig. 1. As we later show, the encoder can be
switched for any common backbone encoder.

The encoder generates a domain-invariant feature rep-
resentation from multi-modal inputs. It consists of two
sub-modules: 1) an ECGNeXt, serving as the backbone,
which is adapted from ECGFounder [7] with refinements
from ConvNeXt [8] to capture temporal patterns; and 2)
a Meta Net, a multi-layer perceptron that processes demo-
graphic covariates (age and sex). Features from both are
concatenated to form a unified representation.

This shared representation is then fed into two classifier
heads. The task classifier performs the final binary predic-
tion for Chagas disease. Concurrently, the domain classi-
fier, integral to our adversarial training, learns to identify
the data’s source domain, compelling the encoder to pro-
duce more generalisable, domain-agnostic features.

2.3. Training Strategy

To address the key challenges, we devised the two-stage
training paradigm illustrated in Fig. 2. The objective is a
composite of several specialised losses, activated dynami-
cally across the two stages.

Stage 1: Pre-training with Noise and Domain Adap-
tation. The goal of this stage is to learn robust, domain-
invariant features from the large-scale, noisy CODE15
dataset, by combining three techniques.

First, to handle class imbalance, we used LMFLoss, a
weighted combination of Focal Loss (which focuses on
hard-to-classify examples) and Label-Distribution-Aware
Margin (LDAM) Loss (which enforces a larger margin for
the minority class). The combined objective is defined as:

LLMF = − α(1− py)
γ log(py)

− β [dy log(σ(s(zy −∆y)))

+(1− dy) log(1− σ(s(zy −∆y)))]

(1)

where py is the predicted probability, dy ∈ {0, 1} is the
true binary label, zy is the original logit, σ(·) is the sigmoid
function, ∆y is the class-dependent margin, and s is the
scale parameter from LDAM which adjusts the logits to
control the steepness of the loss landscape.

Second, to counteract label noise, we integrated Early
Learning Regularization (ELR) [9]. It adds a regularisa-
tion term to the standard Binary Cross-Entropy (BCE) loss,
preventing the model from memorising incorrect labels by
regressing towards its historical consensus. The regulariser
is an MSE loss between the current prediction and an ex-
ponential moving average (EMA) of past predictions.

Third, for domain generalisation, we employed a
Domain-Adversarial Neural Network (DANN) which we
have previously used for ECGs [10,11]. To create a diverse
set of domains, we incorporated several external datasets
(e.g., CSPC, PTB from PhysioNet 2021 [12]). Each of
these datasets, along with the primary CODE15 data, was
treated as a distinct domain. Crucially, the diagnostic la-
bels from these external datasets were discarded.

The DANN framework involves two competing objec-
tives. The domain classifier is trained to predict the source
domain out of K possible domains. Its objective is to min-
imise the standard multi-class cross-entropy loss, LD:

LD =

K∑
k=1

−[dk log(d̂k) + (1− dk) log(1− d̂k)] (2)

where d is the one-hot true domain label and d̂ is the pre-
dicted domain probability distribution.

Concurrently, the encoder is trained to fool the classifier
by minimising a confusion loss, LC. This loss encourages
a uniform prediction from the domain classifier, which cor-
responds to high prediction entropy. We therefore define it



EncoderCODE15

CODE15

CPSC

PTB

Ningbo

Task 

Prediction

Domain 

Prediction

Task 

Label

Domain 

Label

Previous 

Prediction

𝐿𝐸𝐿𝑅 Update

Task 

Classifier

Domain 

Classifier

P
re

-t
ra

in
 S

ta
g

e
F

in
e-

tu
n

e 
S

ta
g

e

Teacher 

Encoder

Task 

Classifier

SaMiTrop

PTB-XL

CPSC

PTB

Ningbo
Encoder

Task 

Prediction

Task 

Label
𝐿𝐿𝑀𝐹

Feature

Feature

𝐿𝐷𝑖𝑠𝑡𝑙𝑙
D

at
a 

P
re

p
ro

ce
ss

in
g
 &

 D
at

a 
A

u
g
m

en
ta

ti
o

n

𝐿𝐿𝑀𝐹

(Pos)

(Neg)

𝐿𝐷

𝐿𝐶𝑜𝑛𝑓

Data Flow

Gradient Flow

Figure 2. The proposed two-stage training strategy. Stage 1 (Pre-training) focuses on learning domain-invariant features
from large-scale noisy data using DANN and ELR. Stage 2 (Fine-tuning) adapts the model to high-quality data using
feature distillation to retain generalisability.

as the negative entropy of the classifier’s output:

LC =

K∑
k=1

d̂k log(d̂k) (3)

This adversarial process forces the encoder to learn
domain-agnostic representations.

The optimization objectives for the encoder (θe), task
classifier (θt), and domain classifier (θd) are defined as fol-
lows:

θ∗e = argmin
θe

(LLMF + λELRLELR + λDANNLC) (4)

θ∗t = argmin
θt

(LLMF + λELRLELR) (5)

θ∗d = argmin
θd

LD (6)

Stage 2: Fine-tuning with Preservation of Domain
Generalisation. In this stage, the model is adapted us-
ing smaller, high-quality datasets. The key challenge is to
specialise the model for the target task without forgetting
the robust, domain-invariant features learned during pre-
training. We consider two approaches to this.

The first employs feature distillation [13]. The en-
coder pre-trained with DANN, which excels at produc-
ing domain-agnostic representations, acts as a frozen
“teacher”. The fine-tuning encoder (“student”) is then
guided by minimising an MSE loss (LDistill) between
its feature outputs (ϕstudent(x)) and those of the teacher
(ϕteacher(x)).

LDistill = MSE(ϕstudent(x), ϕteacher(x)) (7)

This process ensures the model retains its ability to gener-
alise across different data domains. The primary task was
still optimised using LMFLoss.

The optimisation objectives for this stage were:

θ∗e = argmin
θe

(LLMF + λDistillLDistill) (8)

θ∗t = argmin
θt

LLMF (9)

Here, the λ terms are hyperparameters balancing the dif-
ferent loss components.

The second, simpler, approach freezes the encoder and
only trains the classifier head using the fine-tuning data.

3. Results

We trained the models using the AdamW optimiser with
mini-batch stochastic gradient descent. The learning rate
was managed with a warm-up period followed by a cosine
annealing schedule. To prevent overfitting, we employed
early stopping based on the validation set performance,
with a patience of 5 epochs for pretraining and fine-tuning.
We experimented with different settings, such as changing
the encoder to SEResNet [10]. We also tested changing
the settings of the fine-tuning stage, such as freezing the
encoder.

3.1. Challenge Results

We evaluated several model configurations to assess the
impact of different components, shown in Table 1.



Table 1. Challenge Score on validation and test datasets.
Encoder λDANN λDistill Local Valid Test
SEResNet18 0.8 0 0.793 0.231 –
SEResNet18 0.8 0.01 0.760 0.234 –
SEResNet18 0.8 N/A 0.627 0.338 –
ECGNeXt 0.3 0 0.827 0.230 –
ECGNeXt 0.8 0 0.807 – –
ECGNeXt 0.8 0.05 0.793 0.294 –
ECGNeXt 0.8 N/A 0.713 0.254 –
ECGNeXt 1.0 0.05 0.620 – –
N/A: The encoder was frozen during fine-tuning.

4. Discussion

Our approach to the challenge integrated a two-stage
training strategy with ELR for noise robustness, LMFLoss
for imbalance, and domain-adversarial training with fea-
ture distillation for domain generalisation.

The results in Table 1 highlight two major observations.
First, models that performed strongly on the local dataset
(0.7–0.8) exhibited a drop on the Challenge validation set
(0.23–0.34). Moreover, this effect was amplified by model
complexity: while ECGNeXt achieved high local scores,
it failed to generalise across domains, whereas the simpler
SEResNet18 achieved the best validation score (0.338).
These findings highlight that higher capacity models are
prone to overfitting domain-specific features, and that sim-
plicity may sometimes offer better robustness.

Second, adversarial training and distillation played a
crucial role in improving robustness. A stronger adver-
sarial signal (λDANN = 0.8) achieved markedly higher
scores than weaker settings, confirming the role of DANN
in learning domain-invariant features. Feature distillation
further regularised fine-tuning, outperforming both en-
coder freezing and unconstrained adaptation, by preserv-
ing transferable knowledge from pre-training while still
adapting to high-quality target data.

While our preliminary ablation study highlights the ben-
efits of DANN and feature distillation, a more exhaus-
tive set of studies, including more detailed hyperparame-
ter search, is required in future work to better quantify the
impact of each aspect of the training strategy.

In conclusion, our results strongly suggest that the com-
bination of domain-adversarial training to learn generalis-
able features and feature distillation to preserve them of-
fers a robust framework for mitigating domain shift.
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