SwissBeatsNet: A Multilead Masked Autoencoder for Chagas Disease Detection

Lucas Erlacher!”, Andrea Agostini'”, Samuel Ruiperez-Campillo'",
Ece Ozkan'?", Thomas M. Sutter!’, Julia E. Vogt'*

'Department of Computer Science, ETH Zurich, Switzerland
2Department of Biomedical Engineering, University of Basel, Switzerland

* Shared first authorship; T Shared last authorship

Abstract

Chronic Chagas Disease is a parasitic cardiomyopathy
often causing arrhythmias, conduction defects, and heart
failure, yet early ECG diagnosis remains difficult, espe-
cially in low-resource. We propose SwissBeatsNet, a multi-
lead masked-autoencoder (MLMAE) framework that treats
ECGs as synchronized channels to learn intra-lead tem-
poral dynamics and inter-lead spatial dependencies. Self-
supervised pretraining using CODE-15%, SaMi-Trop, and
PTB-XL datasets reconstructs randomly masked windows
while incorporating an alignment objective to enhance rep-
resentation learning. We then freeze the encoder and train
an ensemble of linear heads to predict a Chagas disease
score. On the hidden Physionet 2025 test set, the selected
SwissBeatsNet model achieves a score of 0.425. We ranked
the 4th position as a team on the leaderboard.

1. Introduction

Chagas disease, caused by the protozoan Trypanosoma
cruzi, remains a major public health challenge in Latin
America [1]], and is increasingly detected in non-endemic
regions such as North America and Europe [2]. A common
chronic infection manifestation is chronic Chagas cardiomy-
opathy (CCC), a parasitic cardiomyopathy that often leads
to conduction disease, arrhythmias, and heart failure [3].
Early detection of cardiac involvement is essential yet diffi-
cult, specially in primary care and resource-limited settings,
because routine electrocardiogram (ECG) interpretation
lacks sensitivity to detect subtle early abnormalities [4].

Recent advances in self-supervised learning (SSL) en-
able the extraction of informative representations from large
unlabeled corpora, reducing dependence on expert anno-
tations and potentially improving transfer to downstream
tasks. Within SSL, contrastive learning (CL) aligns seman-
tically related segments while separating unrelated ones to
structure latent spaces [5}/6]. Time-series masked autoen-
coders (MAES) [7] could complement this by reconstructing

segments to capture local and global context. Applied to
multichannel ECGs [8]], MAE-style objectives can leverage
cross-lead synchrony; however, many existing approaches
still treat leads independently, ignoring meaningful joint
temporal—spatial dependencies.

In Chagas disease, automated ECG analysis has evolved
from handcrafted features and classical classifiers [9]] to
deep learning using CNN/LSTM models trained on raw sig-
nals [[10]. Despite promising, these methods often require
substantial labeled data and may generalize poorly across
populations and acquisition protocols.

In this work, we present SwissBeatsNet, a multilead MAE
(MLMAE) framework for Chagas disease detection from
multi-lead ECGs. Treating each lead as a synchronized
channel in a multivariate time series, our model jointly
learns of intra-lead temporal dynamics and inter-lead spa-
tial dependencies. During self-supervised pretraining on a
combination of the CODE-15%][11]], SaMi-Trop[12]], and
PTB-XL [13] datasets, SwissBeatsNet reconstructs ran-
domly masked temporal windows (inspired by MAEs [14])
and employs an auxiliary alignment objective to sharpen
representations and mitigate shortcut learning.

Our contributions are threefold: (i) joint spatio-temporal
modeling across ECG leads within a unified MLMAE back-
bone; (ii) integration of MAE reconstruction with alignment
regularization to couple context modeling and discrimina-
tive structure; and (iii) multi-dataset pretraining to enhance
robustness and cross-cohort generalization.

This study is part of the George B. Moody PhysioNet
Challenge 2025 [[15]], hosted on PhysioNet [16].

2. Methods

2.1. Data Sources

Let X = {X®} N2 describe a dataset consisting of Ny
ECG recordings where XV ¢ RIM*Ne s a multi-lead
ECG signal of Ny, samples with L being the set of available
leads. Hence, we have X9 = {xl(i)}lE]L. In this work, we
used three corpora: CODE-15%-—a subset of 350,000 Brazil-



ian primary-care ECGs, 10s at 400 Hz, annotated with di-
verse cardiac diagnoses [[11]]; SaMi-Trop—a Chagas-specific
cohort from Minas Gerais, with confirmed seropositive par-
ticipants and clinical metadata, 10s at 300 Hz, acquired via
the Brazilian Telehealth Network [12]; and PTB-XL—-a pub-
lic German dataset spanning a broad diagnostic spectrum,
10s at 100 or 500 Hz, annotated by cardiologists, used to
increase morphological diversity during pretraining [13].
For both pretraining and finetuning, we pooled all three
datasets and harmonized signals by resampling to 250 Hz
and fixing the length to N, =2,250 samples via trimming
or symmetric zero-padding; each lead then underwent a 0.5
Hz high-pass Butterworth filter, 50 Hz powerline removal,
and lead-wise z-score normalization. For the given datasets,
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2.2. SwissBeatsNet Architecture

We develop an SSL framework based on MAEs [ 14] tai-
lored to multilead ECGs. SwissBeatsNet combines masked-
signal reconstruction with an alignment objective [17] to
capture intra-lead temporal dynamics and inter-lead spa-
tial relationships. The pipeline has two stages: (1) self-
supervised pretraining on unlabeled ECGs, and (2) su-
pervised finetuning with a binary Chagas classifier—see
overview in Figure[I]

2.2.1. Pretraining Stage

The proposed model follows the vision transformer archi-
tecture [|18]] and the pretraining introduced in [[17], i.e., the
reconstruction of missing input patches based on available
input patches using an encoder Ey and a decoder Dy. We
first split each lead signal into P non-overlapping patches
sy, such that x; = [s;,,...,s;,,] and subsequently trans-
form the patches to d;-dimensional tokens using a learnable
linear projection. For this, we randomly mask m = 90%
of input tokens and only input the remaining tokens to the
encoder Ey. The decoder Dy predicts the sample values
of the masked tokens based on the encoded input tokens.
Both the encoder Fy4 and the decoder Dy are shared across
the individual leads, i.e., there is only one encoder and one
decoder, and the leads are reconstructed independently.

The pretraining loss £ becomes: £ = L + 5L 4, Where
a scaling parameter 3 controls the contribution of the con-
trastive term to the overall loss.

Reconstruction Objective. The pretraining objective mini-
mizes the following reconstruction loss Lg:

IIL\ A ZZII s,

lell p=1

Lr= — &, 113, (1)

where 8; is the reconstruction of the respective input patch.

Alignment Loss. To encourage cross-lead consistency
within the same record, we regularize with £, [17], in-
stantiated either as MSE between per-lead embeddings or
as a contrastive objective.

For the MSE loss, i.e., L4 = Ly sk, we calculate the
average mean squared error across all pairs of per-lead
embeddings, where each per-lead embedding e is obtained
by averaging the token embeddings of the lead, i.e., ; =

P
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The contrastive loss, i.e., L4 = L¢, is computed as in [17]:
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where A(el el )) = exp (slm(e1 ), e )/7’), sim(-, -)
is the cosine 51m11arity, T a temperature parameter, and |
defines a lead not equal to [. All pairs of leads from the same
ECG recording ¢ are treated as a positive pair. Embeddings
from different studies j # 4, regardless of the lead, serve as
negative samples.

2.2.2. Finetuning Stage

We adapt the pretrained, label-agnostic encoder Ey to
Chagas prediction via either of the following two classifica-
tion networks. (i) Per-lead ensemble: per-lead heads Hy,
consume the embedding of the [CLS] token and apply a
linear projection (halving dimensionality), ReL U, dropout,
and a final linear layer to produce lead-wise disease scores
- the record-level score is then given by the mean over
all leads-wise scores. (ii) Fused MLP: concatenated per-
lead [CLS] embeddings are transformed into a record-level
disease score by a 4-layer MLP (where each layer halves di-
mensionality and is composed of linear projection, ReLUm
and dropout).

2.3.  Training Details

All runs (pretraining and finetuning) used batch size 128,
AdamW, and a multi-GPU Distributed Data Parallel strat-
egy. In the pretraining part, we trained ViT-Tiny and ViT-
Base [18]]. ViT-Tiny ran 120 epochs with linear warm-up of
the learning rate (LR) followed by cosine decay; we use a



A PRETRAINING Ly

— ————— — — — —

Ll Ll L]

b L L]

N RN TP

B FINETUNING

| NN
FusioN

Wa'»»
£

IC__ )

i HEALTHY
. CHAGAS

\ ~

*UUD»

Figure 1. Overview of SwissBeatsNet architecture. Pretraining is shown on the left and downstream finetuning on the right.

sigmoid schedule to anneal 8 from O to 1. We trained ViT-
Base in total for 720 epochs. For the finetuning part, the
classifier used a binary cross-entropy loss and a minority
oversampling strategy to handle the class imbalance present
in the datasets. We evaluated both a frozen-encoder setup
(classifier training only) and finetuning of all parameters.

3. Results

Evaluation Protocol. We split the combined dataset into
non-overlapping subsets at the record level, with 80% used
for the training of the model, 10% for tracking overfitting
during training (S7), and 10% for assessing the generaliza-
tion error of the trained model (S3). During pretraining, we
monitored reconstruction loss on both the training set and
S1 to assess potential overfitting. To evaluate the learned
representations, we conducted linear probing on the encoder
using six auxiliary (non-Chagas) diagnostic labels available
in the CODE-15% dataset, where the mean AUROC across
these labels served as a proxy for the quality of the rep-
resentations. In the finetuning phase, we tracked binary
cross-entropy loss and per-class (Chagas vs. non-Chagas)
accuracy on the training set and S;. Final predictive perfor-
mance on the Chagas classification task was evaluated using
the challenge score on S7 and S5 to assess generalization.

Implementation Details. @ We conducted two self-
supervised pretraining runs: ViT-Tiny (patch size 90) using
the alignment loss from Eq[3] and ViT-Base (patch size 50)
using the loss from Eq[2} Key configuration values for the
finetuning runs are summarized in Table [I] Note that in
submission 2815, the ensemble’s classification heads were
restricted to a single linear layer. Table [T] furthermore re-
ports model performance on the Chagas task across S and
So, with the final column displaying the challenge score on
the official leaderboard set.

Results Analysis. Among our experiments, end-to-end
finetuning achieved high specificity, but was outperformed
overall by approaches that froze the encoder and trained
only lightweight classification heads. Notably, submissions
2813 and 2816 (referring to official Challenge submission
IDs) yielded the strongest results across multiple metrics.
Submission 2813 excelled in sensitivity and demonstrated
strong generalization from S; to So, while 2816 achieved
strong specificity and slightly higher Challenge Scores on
both S; and the leaderboard test set, despite using the
smaller ViT Tiny backbone. However, given it’s more sta-
ble generalization between S, Ss, and leaderboard test
set, and its high sensitivity - which closely aligns with the
Challenge Score objective - we ultimately decided to select
submission 2813 for evaluation on the final test set. The
relevant scores of this model are summarized in Table 2]

4. Discussion and Conclusion

Our findings highlight the promise of SwissBeatsNet for
detecting Chagas disease from 12-lead ECGs, particularly
in low-resource settings where early diagnosis remains a
challenge. Although the achieved challenge score (0.425)
reflects task difficulty, the model’s ability to learn gen-
eral cardiac patterns through self-supervised pretraining
enhances its sensitivity to subtle pathological changes in-
dicative of early-stage CCC. The combination of masked au-
toencoder pretraining with an alignment objective enables
the model to capture both intra-lead dynamics and inter-
lead spatial dependencies. This multilead design, trained
across heterogeneous datasets, supports better generaliza-
tion across populations and acquisition conditions, an es-
sential feature for real-world deployment.

Several limitations remain. Dataset biases, such as de-
mographic and equipment variability, may influence model



AUROC Sens. Spec. Score

ID VIiT  Classifier Finetuning Base LR Epochs A S, A S, S S, A S, Validation
2812 Base Fused Heads le-3 3 087 086 0.63 0.65 091 091 049 053 0.314
2813 Base Ensemble Heads le-3 1 0.87 086 0.69 0.70 0.86 0.86 045 0.50 0.425
2815 Base Ensemble All le-5 5 085 0.84 052 057 092 092 042 046 0.352
2816 Tiny Ensemble Heads 3e-3 15 092 083 068 047 094 093 056 040 0.430

i

Table 1. Key parameters and downstream performance of different submissions. ”ID” refers to the leaderboard ID, ”Sens.
to Sensitivity, ”Spec.” to Specificity, "Score” to Challenge Score and Validation” to the leaderboard score. The highest

score of each column is marked in bold and the second highest in italics.

Training  Val.  Test Val. Ranking Test Ranking
0.500  0.425 - 4| -

Table 2. Challenge Scores of the selected entry. ”Training”
refers to the score on S5, ”Val.” to the leaderboard score,
and “Test” to the score of the final evaluation, to be filled
after results are announced.

behavior. Additionally, our retrospective evaluation calls
for prospective clinical validation to confirm its effective-
ness in routine care. Future directions include integration
with point-of-care ECG devices to support early screen-
ing in endemic regions and extending the framework to
multi-disease detection for broader clinical impact.

In summary, this work introduces the first MMAE-based
multilead ECG framework for Chagas detection, leveraging
large-scale self-supervised pretraining and targeted finetun-
ing. SwissBeatsNet demonstrates the feasibility of scalable,
generalizable ECG-based diagnostics with meaningful pub-
lic health implications.
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