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Abstract

Cardiovascular diseases are a leading cause of death
globally, highlighting the need for accurate, noninvasive
diagnostic tools. Electrocardiographic imaging (ECGI)
has emerged as a promising technique for reconstructing
epicardial potentials from body surface measurements, of-
fering an alternative to invasive procedures. This work
presents a novel spatio-temporal separable Mercer kernel
framework for estimating premature ventricular complex
(PVC) origins, aiming to enhance the precision of ECGI-
based localization. We incorporate spatial-temporal cor-
relations in the kernel and use ADAM optimization to
model epicardial potential dynamics. The proposed ap-
proach is evaluated using real ECGI data, and its perfor-
mance is compared to traditional methods, including the
Tikhonov regularization. Results show that the Gaussian
kernel achieves the lowest NSME (0.3439) and smallest lo-
calization error (12.55 mm), outperforming the Laplacian
kernel (NSME = 0.3503; 23.99 mm) and Tikhonov (NSME
= 0.5036; 36.48 mm). This study contributes to advanc-
ing ECGI as a reliable tool for guiding catheter ablation
in PVC patients, improving clinical outcomes through pre-
vious localization.

1. Introduction

Cardiovascular diseases remain a leading cause of pre-
mature mortality worldwide, with 17.9 million lives lost
each year, creating a constant demand for more accurate,
efficient, and noninvasive diagnostic tools [1]. Traditional
12-lead electrocardiograms (ECG) are well established as
the gold standard in electrocardiology and widely used due
to their accessibility, but with insufficient spatial resolu-
tion. In contrast, invasive intracardiac mapping provides
detailed insights at the cost of procedural complexity and
patient risk. Electrocardiographic imaging (ECGI) has
emerged as a noninvasive approach to map cardiac elec-

trical activity from body surface potential measurements
(BSPM) to epicardial potential source estimation [2].

Premature Ventricular Contractions (PVCs) are a fre-
quent arrhythmic event, affecting 40% to 75% of the gen-
eral population with varying prevalence with age and co-
morbidities [3]. For many years, it has been understood
that benign symptomatic or high-burden PVCs can poten-
tially lead to cardiomyopathy and provoke more severe ar-
rhythmias. In such cases, catheter ablation has been rec-
ognized as the preferred treatment approach. However,
the success of this procedure heavily relies on the precise
identification of the PVC origin [4]. Recent studies have
highlighted the potential of ECGI to improve the accuracy
of PVC localization, thereby offering support for ablation
planning [5].

This work proposes a novel spatial-temporal Mercer
kernel framework and ADAM optimization for estimating
PVC origins from ECGI data. Our approach seeks to im-
prove the precision of inverse solutions by incorporating
spatial and temporal correlations into the kernel design.
The goal is to reduce localization error while maintaining
robustness across varying patient anatomies and PVC ori-
gin sites. This contribution builds on our prior work and
aims to move ECGI closer to becoming a reliable clinical
tool for guiding catheter ablation in PVC patients.

2. Materials and Methods

We introduce the methods for modeling epicardial po-
tentials based on spatio-temporal kernel modeling and the
experimental dataset used, and the mathematical formula-
tion of the ECGI inverse problem.

2.1. ECGI Inverse Problem

The ECGI inverse problem involves reconstructing epi-
cardial potentials from body surface measurements. The
extracellular potential is denoted as ve(re, t), represent-
ing the torso potential in the context of the inverse elec-



trocardiography problem. The source potential is denoted
as vs(rs, t), representing the epicardial potential, while
the transmission operator is H(re, rs). The fundamental
equation governing the relationship between these poten-
tials is:

ve(re, t) = H(re, rs)vs(rs, t) (1)

Here, re ∈ Se and rs ∈ Ss represent the continuous sur-
faces on which the measurements and sources are located,
respectively. The discretization process occurs in time at
t = tn = nTs, where n = 1, . . . , Nt. The measure-
ment surface Se is discretized into a set of points rie with
i = 1, . . . , Ne, while the source surface Ss is discretized
into a set of points rjs with j = 1, . . . , Ns. We can dis-
cretize in space and time as:

H(i, j) = H(rie, r
j
s), (2)

V e(i, n) = ve(r
i
e, n∆t) (3)

V s(j, n) = vs(r
j
s, n∆t) (4)

so that H ∈ RNe×Ns , V e ∈ RNe×Nt , V s ∈ RNs×Nt ,
and then, the matrix-form expression is

V e = HV s (5)

The solution is

V̂ s = argmin
V s

∥V e −HV s∥22︸ ︷︷ ︸
Data-fidelity term

+ γ∥LV s∥22︸ ︷︷ ︸
Regularization term

. (6)

The data-fidelity term in the optimization problem penal-
izes the discrepancy between the measured torso potential
V e and the estimated epicardial potential V s, which is
generated by the forward model H . The regularization
parameter γ controls the balance between the fit to the ob-
served data and the enforcement of prior information, pro-
viding a trade-off between minimizing residual error and
ensuring smoothness or other desired properties in the so-
lution. The matrix L is the regularization operator, usually
the identity matrix.

The Zero-order Tikhonov (ZOT) method is a popular
technique for solving the inverse problem optimization in
Eq. 6 by algebraic manipulation. In this particular case, a
closed solution appears as:

V̂ s(γ) =
(
H⊤H + γ2L⊤L

)†
H⊤V e, (7)

where denotes the Moore-Penrose pseudoinverse. The
ZOT model serves as a baseline for comparison with other
proposed models.

2.2. Spatio-temporal Kernel Modeling

In ECGI, accurately reconstructing epicardial potentials
from body surface measurements presents significant chal-

lenges. The primary difficulty lies in capturing the com-
plex dynamics that emerge from the spatio-temporal na-
ture of the epicardial potentials. To address this issue, we
introduce a spatio-temporal kernel-based approach. This
method leverages the separability between the spatial and
temporal components of the kernel, enabling a more pre-
cise modeling of the source potential. In this setting, a
time-space expansion of the source potential in Ss is given
by

vs(rs, t) ≈
Nt∑
n=1

Ns∑
j=1

αn,sK(rs − rjs, t− tn) (8)

where

K(r, t) = e

(
− ∥r∥2

2σ2
s

)
e

(
− |t|2

2σ2
t

)
= Ks(r)Kt(t) (9)

is a Mercer kernel, and σs, σt are the kernel bandwidths
for spatial sources and time. The spatio-temporal kernel
is separable in time and space. We can discretize in space
and time,

Ks(j, j
′) = Ks(r

j
s − rj

′

s ), (10)

Kt(n, n
′) = Kt(n− n′). (11)

so that Ks ∈ RNs×Ns and Kt ∈ RNt×Nt . Then, the
matrix-form expression is:

V̂ e = HV s ≈ HKsαKt (12)

where α ∈ RNs×Nt , The functional to be minimized has
the matrix form:

J(α) = min
α

∥E(α)∥22 = min
α

∥V e −HKsαKt∥22
(13)

In this setting, specific strategies must be considered to
deal with the selection of hyperparameters of the ker-
nel and the optimization algorithm for the spatio-temporal
functional.

There are numerous approaches to regularizing the in-
verse problem in the literature. However, few sample stud-
ies implement cross-validation strategies to search for the
free parameters [6]. An out-of-sample cross-validation
strategy adapted from the one proposed in the previously
cited work was used to search for the hyperparameters of
Ks and Kt.

2.3. Optimization

The optimization problem in Eq. (13) can be tackled
using gradient descent, although there are no guarantees of
reaching a global minimum, given the computed gradient

∇αL(α) =
(
−KT

s H
TE(α)KT

t

)
(14)



Figure 1. Comparison of original and reconstructed epicardial potential signals at various spatial points.

Gradient descent makes it feasible to compute the opti-
mization variable matrix α, especially as the number of
spatial and temporal samples increases. To overcome the
limitations of traditional gradient descent, the Adam op-
timizer is widely recognized as an effective alternative in
iterative gradient descent optimization [7].

2.4. Experimental Dataset

The experiments were developed using real bioelectric
signals from the EDGAR Time Signal Catalog [8]. The
first selected dataset was for the ischemia torso tank with a
cardiac cage, obtained and publicly shared by Utah Univer-
sity [9]. This dataset consists of 4 subsets, namely a con-
trol subset plus three intervention subsets, each composed
of several torso and cavity geometry records and a transfer
matrix H with size 192×684. The torso signal recordings
consisted of 192 signals from BSPM sensor signals, while
the cavity records consisted of 684 needle sensor signals,
which are known as electrograms, connected to the cage.

3. Experiments and Results

In this experiment, we evaluated the performance of
three methods for reconstructing epicardial potential sig-
nals. The methods tested include the Tikhonov method,
which serves as the baseline, and two spatio-temporal ker-
nel methods, using Laplacian and Gaussian kernels. Hy-
perparameter tuning for each method was performed using
a cross-validation strategy to optimize reconstruction ac-
curacy.

The reconstruction accuracy of the electrograms was

assessed using the Normalized Squared Mean Error
(NSME), with the following results: the Laplacian ker-
nel achieved an NSME of 0.3503, the Gaussian kernel had
an NSME of 0.3439, and the Tikhonov method yielded
the highest error with an NSME of 0.5036. Additionally,
more quantitative metrics are assessed. Tikhonov yields
a temporal correlation coefficient of 0.715 ± 0.270 (me-
dian ± IQR), a relative error of 0.724 ± 0.202, and the
largest localization error (36.48 mm). The Gaussian kernel
achieves the best performance, with 0.820 ± 0.199 corre-
lation, 0.586 ± 0.244 relative error, and the smallest local-
ization error (12.55 mm). The Laplacian kernel performs
intermediately at 0.801 ± 0.192 correlation, 0.606 ± 0.245
relative error, and 23.99 mm localization error. These re-
sults show that the Gaussian kernel provides the most ac-
curate reconstruction, closely followed by the Laplacian
kernel.

Given the previous results, Figure 1 compares the orig-
inal and reconstructed signals at several spatial points.
The Tikhonov method shows more noticeable discrepan-
cies from the original signal; these discrepancies are par-
ticularly pronounced in cases with a sudden change in po-
tential. In some cases, the Gaussian and Laplacian kernel
methods handle the estimation better, although they still
produce biased results. Figure 2 compares activation time
(AT) maps for the proposed methods. To compute the AT,
the electrograms were first preprocessed using a 4th-order
Butterworth band-pass filter (100 Hz to 1000 Hz), and then
the activation times were estimated following the approach
described in [10]. The Tikhonov method produces more
smoothed patterns, with blurred activation fronts and sig-
nificant displacement of the earliest activation site. This is



Figure 2. Activation time (AT) maps and the correlation coefficient (r) between reconstructed and original AT maps. Red
and green asterisks denote the estimated and true earliest activation sites, respectively.

reflected in a lower correlation with the reference AT maps
(r = 0.820), indicating reduced spatial fidelity. In contrast,
the Gaussian kernel preserves sharper spatial gradients,
achieves the highest correlation (r = 0.882), and aligns the
earliest activation sites more closely with the ground truth.
The Laplacian kernel also improves over Tikhonov, with a
correlation of r = 0.864, though with slightly greater spatial
diffusion than the Gaussian kernel.

4. Conclusions

This study evaluated three methods for reconstructing
epicardial potential signals: the Tikhonov method, the
Laplacian spatio-temporal kernel, and the Gaussian spatio-
temporal kernel. The results show that both kernel-based
methods, particularly the Gaussian kernel, outperform the
Tikhonov method in terms of reconstruction accuracy.
These preliminary findings highlight that spatio-temporal
kernel-based approaches pose an encouraging direction for
addressing the ECGI inverse problem. Future work may
focus on optimizing kernel-measured spatio-temporal cor-
relations.

Acknowledgments

This work was supported by the Research Grants
HERMES, LATENTIA, AND PCardioTrials. (PID2023-
152331OA-I00, PID2022-140786NB-C31, and PID2022-
140553OA-C42), funded by MICIU/AEI/ 10.13039/
501100011033. Also supported by Rey Juan Carlos Uni-
versity, project HERMES 2024/00004/00, and a grant from
Comunidad de Madrid to the Madrid ELLIS Unit.

References

[1] World Health Organization. Fact sheet on cardiovascular
diseases (CVDs).

[2] Cluitmans M, Brooks DH, MacLeod R, Dössel O, Guillem
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