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Abstract

Panoramic optical mapping provides rich spatiotem-
poral information on cardiac electrical activity through
video recordings, where each pixel corresponds to a signal
evolving over time, yielding thousands of signals per sub-
ject. In this study, we propose a novel method for analyz-
ing high-volume data. The approach reduces the temporal
dimensionality of the signals using manifold learning and
then identifies groups of signals using community detec-
tion (Louvain algorithm) and clustering (K-means). The
two grouping techniques were compared both qualitatively
and quantitatively using the modularity index. For Sub-
ject 1 (sinus rhythm), Louvain identified 16 communities
with a modularity of 0.8763, while K-means identified 14
clusters with a modularity of 0.8492. For Subject 2 (atrial
tachycardia), Louvain found 12 communities (modular-
ity 0.8282) and K-means 15 clusters (modularity 0.8049).
In both cases, Louvain achieved slightly higher modular-
ity, suggesting more coherent community structures. This
methodology enables visualization of thousands of signals
in an interpretable latent space, and it may have the poten-
tial to reveal organizational patterns in the heart, highlight
preprocessing requirements, and provide insights into the
propagation of electrical impulses.

1. Introduction

Cardiac arrhythmias represent a significant health is-
sue in our society, affecting more than 60 million people
worldwide. Depending on the type of arrhythmia, patients
can develop serious complications such as stroke, heart
failure, or even sudden cardiac death if the condition is not
promptly recognized and treated [1]. Therefore, it is fun-
damental to study and develop new approaches that enable
a comprehensive understanding of arrhythmias, including
their underlying mechanisms and their spatiotemporal or-
ganization within the heart.

Panoramic optical mapping (POM) involves acquiring

images of the heart from multiple viewpoints using mul-
tiple optical cameras. Each camera has its own specific
field of view, thus enabling the extraction of information
from different regions of the heart. Therefore, this imag-
ing technique provides fluorescent recordings of the elec-
trophysiological activity across the entire epicardial sur-
face, providing detailed information on the spatiotemporal
propagation of electrical activity responsible for maintain-
ing cardiac arrhythmias [2].

POM provides spatiotemporally rich information in the
form of a video, where each pixel corresponds to a sig-
nal that evolves over time. Therefore, a complete dataset
for a single subject can consist of thousands of signals.
Manifold learning (MnL) techniques can help analyze such
large datasets by reducing their temporal dimensions to
two or three, enabling the visualization of all the infor-
mation simultaneously in a latent space that preserves the
most relevant features of the original data. Additionally,
the embedded space allows further analyses, such as iden-
tifying groups of signals with shared characteristics, which
may reveal regions of abnormal electrical conduction and
other electrophysiological phenomena [3].

In this study, we propose a methodology that enables
a comprehensive analysis of the information provided by
POM, combining MnL with a comparison of two different
group-detection techniques that can regionalize heart areas
and allow the study of their behavior. The structure of this
work is as follows. The methodology is detailed in Section
2, the experiments performed and results obtained are pre-
sented in Section 3, and the conclusions are summarized
in Section 4.

2. Methodology

The methodology proposed in this work consists of re-
ducing the temporal dimensionality of the data to three
using Uniform Manifold Approximation and Projection
(UMAP) [4], identifying communities in the embedded
space with the Louvain algorithm [5] or clusters with K-
means [6], and reconstructing the original image. The



three methods are summarized in this Section.
UMAP is a MnL method that projects high-dimensional

data into a latent space while preserving both local and
global structures. It achieves this by constructing a high-
dimensional graph representation of the data and then
optimizing a corresponding low-dimensional graph to be
as structurally similar as possible to its high-dimensional
counterpart. In this framework, UMAP characterizes the
similarity between two points xi and xj, in the orig-
inal space as probabilities (pij), and likewise between
their corresponding embeddings yi and yj in the lower-
dimensional space (qij). Then, the binary cross entropy
(BCE) between pij and qij , i.e.,

C =
∑
i

∑
j

pij log

(
pij
qij

)
+ (1− pij) log

(
1− pij
1− qij

)
,

(1)
is minimized using the stochastic gradient descent algo-
rithm. The first term of the BCE function encourages
the embeddings of neighboring points to move closer to-
gether, and is activated when xi is a neighbor of xj, or
vice versa, or when both points are neighbors. In contrast,
the second term repels the embeddings of non-neighboring
points, pushing them farther apart.

The Louvain algorithm uses the UMAP-optimized
graph to detect non-overlapping communities by maximiz-
ing the graph modularity (GM), defined as follows,

GM =
1

2 ·m
·
∑
ij

([
Aij −

ki · kj
2 ·m

]
· δ(ci, cj)

)
(2)

where m is the number of edges, Aij indicates whether
nodes i and j are connected, ki is the degree of node i,
and δ(ci, cj) equals 1 if nodes i and j belong to the same
community and 0 otherwise. The Louvain algorithm con-
sists of two phases. During the local optimization phase,
nodes are reassigned to neighboring communities if this
increases GM, and during the aggregation phase, nodes in
the same community are merged into a single node to form
a reduced graph. These phases repeat iteratively until GM
can no longer be improved.

K-means is a clustering algorithm that divides a dataset
into K non-overlapping groups by minimizing the within-
cluster variance. It organizes data points {y1,y2, . . . ,yn}
into K clusters with centroids {µ1,µ2, . . . ,µK}. The ob-
jective function to minimize is defined as follows,

J =

K∑
k=1

∑
xi∈Ck

∥xi − µk∥2, (3)

where Ck is the set of points assigned to cluster k, and µk

is the centroid of that cluster. The algorithm consists of
two steps, i.e., the assignment step, where each point xi is
assigned to its nearest centroid, and the update step, where

Figure 1: Normalized CH index as a function of the
number of clusters for Subjects 1 (blue) and 2 (purple).
The global maximum of each curve is marked with a
red square, and the second-highest peak for Subject 1 is
marked with a green square.

each centroid is recomputed as the mean of the points as-
signed to it. These steps are repeated until the assignments
no longer change or the decrease in J becomes negligible.

3. Experiments and Results

In this study, data obtained from POM using three cam-
eras were analyzed from two subjects: one with a sinus
rhythm (Subject 1) and one with atrial tachycardia (Sub-
ject 2). The acquisition protocol is detailed in [2]. The data
were preprocessed in two steps. First, a three-dimensional
(3D) median filter with a spatial window of 3 × 3 pixels
and a temporal depth of 5 samples was applied to elimi-
nate high-frequency noise while preserving physiological
information. Second, a 4th-order high-pass Butterworth
filter with a cutoff frequency of 1 Hz was applied in a
zero-phase manner to eliminate baseline wander without
distorting the signal. After filtering, the data were normal-
ized to the [0,1] range. After preprocessing, UMAP was
applied to project each signal into a 3D space. After that,
both Louvain and K-means were applied to the embedded
space, and the modularity index was computed to facilitate
a quantitative comparison of the grouping results.

One disadvantage of K-means compared to Louvain is
that the number of clusters must be specified beforehand.
To determine this value, the Calinski–Harabasz (CH) index
was employed. Figure 1 shows the normalized CH index
for 2 to 15 clusters for Subject 1 (blue) and Subject 2 (pur-
ple). The optimal number of clusters for each subject is
highlighted in red, corresponding to 2 clusters for Subject
1 and 15 clusters for Subject 2. However, since 2 clus-



Figure 2: Latent spaces obtained with UMAP (first column), where colors represent communities detected by Louvain
(odd rows) or clusters identified by K-means (even rows). Columns two to four show the latent spaces together with their
corresponding original image reconstructions for cameras 1, 2, and 3, respectively. The colorbar indicates the number of
groups identified in each case and their associated colors.



ters were insufficient to analyze structural or mechanistic
features of the signals, we selected K = 14 for Subject
1, corresponding to the second-highest CH index, marked
with a green square in the plot.

Figure 2 shows the complete latent spaces (left) and the
latent spaces only with the points of each camera, along
with the original image reconstruction with the colors of
the groups encountered. Communities obtained by Lou-
vain are shown in the first and third rows for Subjects 1
and 2, respectively, and clusters obtained by K-means are
shown in the second and fourth rows for Subjects 1 and 2,
respectively. In Subject 1, there are two well-differentiated
clouds of points, one of them corresponding to the in-
formation in cameras 1 and 3, and the other one corre-
sponding to the information in camera 2. Both Louvain
and K-means offer grouping strategies that are similar in
this case, with Louvain detecting 16 communities com-
pared to 14 clusters for K-means. The modularity values
were 0.8763 for Louvain and 0.8492 for K-means, indicat-
ing that both approaches achieved high-quality partitions,
although Louvain provided a slightly better community
structure. In Subject 2, the ROI was smaller, which may
suggest a shared field of view among the different cam-
eras. This overlap may explain why both Louvain and K-
means identified signals in the upper part of camera 1, the
lower-left part of camera 2, and the left part of camera 3
as belonging to the same community. In this case, Lou-
vain detected 12 communities and K-means 15 clusters,
with modularity values of 0.8282 and 0.8049, respectively.
These results show that both methods generated meaning-
ful groups, with Louvain achieving a slightly higher mod-
ularity, suggesting improved consistency in the detected
community structure.

By focusing on the reconstructed images in Fig. 2, it can
be observed that some groups lie close to each other while
others are farther apart, suggesting a progression of com-
munities that may reflect the propagation of the electrical
impulse across the epicardium. Each group represents a re-
gion of the epicardial surface whose signals exhibit similar
behavior, which may be associated with underlying orga-
nizational patterns of electrical activity. In addition, some
communities appear to contain noisier signals, likely due
to a higher noise level in the original recordings. This,
in turn, influences the grouping strategy and can be used
to identify which sets of signals require additional prepro-
cessing, as well as the type of preprocessing, to improve
subsequent analyses.

4. Conclusions

This work proposes a methodology for analyzing large
datasets of high-dimensional POM signals using MnL and
grouping algorithms, i.e., Louvain and K-means. Our ap-
proach enables the simultaneous analysis of thousands of

recordings from a single patient, providing a spatiotempo-
ral view of epicardial POM signals that may yield insights
into organizational patterns in the heart, additional prepro-
cessing requirements, and even the propagation of electri-
cal impulses. When comparing Louvain community de-
tection and K-means clustering, Louvain achieved higher
modularity, although K-means produced comparable val-
ues for the K selected in both subjects. Future studies will
aim to further characterize the embeddings, examine how
points are distributed in the original space, and interpret
the physiological meaning of the communities observed in
the image reconstructions.
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