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Abstract 

Chagas disease affects an estimated 6-7 million people and 
can lead to electrical conduction defects, arrhythmias, and 
cardiomyopathy. We proposed the use of Gaussian 
Process Regression (GPR)-based algorithm for detecting 
Chagas disease from real-world clinical 
electrocardiograms (ECGs), as an entry to the George B. 
Moody PhysioNet Challenge 2025. Raw ECG data were 
obtained from PTB-XL and SaMi-Trop datasets; the 
composite kernel based GPR models were developed and 
trained using R-wave detection and normalization. 
Features included morphological characteristics, heart 
rate variability, and frequency-domain band powers. 
Model was trained on features extracted from single-beat 
ECG segments and evaluated on a held-out test set. The 
model performance was poor, yielding an accuracy of 7%, 
area under the receiver operating characteristic of 0.143, 
and area under precision-recall curve of 0.055. No single 
feature provided a strong separation between classes, 
suggesting the need for more sophisticated features with 
this model. Inspection of misclassified cases showed that 
many false negatives occurred in records with subtle ECG 
abnormalities, while false positives were often associated 
with noisy or atypical signals.  
 
 

1. Introduction 

Chagas disease, caused by Trypanosoma cruzi, affects 
an estimated 6-7 million people – mostly in Central and 
South America- and can lead to conduction defects, 
arrhythmias, and cardiomyopathy. Confirmatory diagnosis 
is limited in many settings, so fast electrocardiogram 
(ECG)-based screening could help prioritize patients for 
testing and treatment[1].  

The objective of this effort is to design, train, and 
evaluate Gaussian process regression (GPR)-based 

algorithms for detecting Chagas disease from standard 
clinical ECGs. We aim for high discrimination and 
clinically useful sensitivity at fixed specificity, with 
robustness to class imbalance, lead configurations, and 
site/domain shifts. We leverage GPR’s calibrated 
uncertainty to support clinician trust and provide feature- 
and lead-level explanations. All models and code will be 
fully reproducible to enable deployment as a triage tool for 
prioritizing confirmatory serological testing and timely 
care. We develop and evaluate GPR methods to detect 
Chagas disease from standard clinical ECGs in the George 
B. Moody PhysioNet / Computing-in-Cardiology 
Challenge 2025[2, 3]. The work covers ECG preprocessing 
(WFDB parsing, denoising, R-peak detection, 
beat/window segmentation), feature extraction at beat and 
record levels (morphology and heart rate variability (HRV) 
descriptors; optional dimensionality reduction), and GPR 
models with radial basis function (RBF) kernels for 
calibrated uncertainty and interpretability. We benchmark 
against simple baselines, report area under the receiver 
operating characteristic (AUROC) curve / area under the 
precision-recall curve (AUPRC) and sensitivity at fixed 
specificity, assess calibration and robustness to class 
imbalance, reduced-lead configurations, and cross-site 
shifts, and follow subject-wise data splits.  
 
1.1. Rationale for GPR 

We chose GPR because it fits the clinical and data 
constraints of ECG-based Chagas screening: it performs 
strongly in small–to–moderate datasets, provides well-
calibrated uncertainty per prediction for safe triage, and 
offers interpretability that highlights which ECG/HRV 
features and leads matter [4]. With flexible kernels (RBF + 
noise), GPR naturally models smooth ECG morphology 
and variability while remaining robust to site and lead 
differences; its probabilistic output can be thresholded at 
fixed specificity and abstain when uncertainty is high[5]. 



 
2. Methods 

We built an analytical pipeline to detect Chagas disease 
from standard ECGs. The pipeline steps included: reading 
and cleaning the signals, finding R-peaks, cutting fixed-
length beats, extracting features, training a GPR with an 
automatic relevance determination kernel, and combining 
beat-level outputs into a record-level score. We report 
accuracy metrics and check that results hold across 
different leads and sites. 

2.1. Assumptions 

We assumed that the labels reflect true status and are 
time-aligned with ECG acquisition and that the ECG 
morphology/HRV contain sufficient signal for Chagas 
discrimination. Additionally, it is assumed that the 
metadata (sampling rate, lead order) are accurate, signal 
quality is adequate after standard denoising, and R-peak 
detection yields consistent segments. Train/validation/test 
splits were assumed to be subject-wise and independent; 
evaluation cohorts were broadly similar to development 
data, or remaining shift was addressed in robustness 
analyses. Missing/variant leads were handled via 
predefined strategies (drop / impute / reduced-lead models) 
without systematic bias. Class priors at evaluation were not 
radically different from development, or any differences 
were mitigated via threshold tuning.  

2.2. Software 

Signal processing and modeling used NeuroKit2 0.2.12 
(ECG cleaning, R-peak detection), WFDB 4.3.0 
(PhysioNet I/O); models were saved with joblib 1.5.1. 
Visualization/workflow used tqdm 4.67.1. Tooling for 
reproducibility and collaboration included Docker, Visual 
Studio Code (Dev Containers), and Git. 

2.3. Data Processing 

Raw ECG data were obtained from the PhysioNet 
Challenge datasets, including PTB-XL [6] and Sami-Trop 
[7]. The data processing pipeline consisted of several steps 
to prepare the signals for machine learning analysis: 

1. Data Extraction and Organization: 
Raw ECG files were organized into project-specific 
folders. A custom PowerShell script recursively scanned 
these folders and invoked a Python script to extract a single 
representative heartbeat from each ECG recording. This 
script utilized WFDB and NeuroKit2 libraries for signal 
reading and preprocessing. 
2. Beat Segmentation and Feature Extraction: 

For each ECG file, the signal was cleaned and R-peaks 
were detected using either NeuroKit2 or a custom 
bandpass filter and peak detection algorithm. Around each 
detected R-peak, a fixed window (typically 0.25 seconds 
before and 0.45 seconds after) was extracted and 
resampled to a standard length (e.g., 300 samples). The 
resulting beat was z-score normalized and saved as both 
.csv and .npy files. 
3. Metadata and Label Assignment: 
Each processed beat was accompanied by metadata 
(sampling rate, lead information, extraction parameters) 
and a label indicating the presence or absence of Chagas 
disease. Labels were assigned based on the source folder 
or accompanying header files and stored in .hea files with 
a standardized format. 
4. Aggregation and Manifest Creation: 
Processed beats and their metadata were aggregated into 
manifest files and compressed datasets for downstream 
analysis. All .csv and .hea files were copied into a unified 
data folder for model training and evaluation. 
5. Model Input Preparation: 
The final dataset consisted of feature vectors extracted 
from the processed beats, with corresponding labels. These 
were used to train and evaluate a GPR model for Chagas 
disease detection.  

2.4. Model Architecture 

The primary objective of this study was to develop a 
robust machine learning model for the detection of Chagas 
disease from ECG signals. The model architecture was 
designed to leverage both domain-specific feature 
extraction and probabilistic classification. 
• Feature Extraction: 

Each ECG signal was processed to extract a 
comprehensive set of features, including HRV metrics, 
morphological characteristics (such as R-peak amplitude 
and QRS duration), and frequency-domain band powers. 
Feature extraction was performed using a combination of 
custom signal processing routines and the NeuroKit2 
library, ensuring the inclusion of clinically relevant and 
statistically informative attributes. 
• GPR Model: 

The extracted features served as input to a GPR model. 
GPR is a non-parametric, Bayesian approach to regression 
and classification that models the underlying data 
distribution and provides uncertainty estimates for 
predictions. During development, several kernel 
combinations – including constant, radial basis function 
(RBF), Matern, and white noise kernels – were evaluated 
for model performance. The final model utilized a 
composite kernel, consisting of a constant kernel 
multiplied by a radial basis function (RBF) kernel, with an 
added white noise kernel. Hyperparameters for the kernel 
were optimized using multiple restarts to ensure robust 
convergence.  



• Calibration and Threshold Optimization: 
To improve the reliability of probabilistic outputs, the 

model incorporated a calibration step using Platt scaling or 
isotonic regression. The final binary classification was 
determined by optimizing the decision threshold to 
maximize the F1 score or the official Challenge score 
metric. 
• Training and Evaluation: 

The dataset was split into training and testing subsets to 
prevent overfitting and to provide an unbiased estimate of 
model performance. Model training was performed on the 
extracted features, and evaluation metrics—including 
AUROC, AUPRC, accuracy, F-measure, and the 
Challenge score — were computed using the official 
evaluation script provided by the Challenge organizers. 
 
3. Results 

The proposed pipeline was evaluated using the official 
PhysioNet Challenge scoring script. The model was 
trained on features extracted from single-beat ECG 
segments and evaluated on a held-out test set. Performance 
metrics included the Challenge score, area under the 
receiver operating characteristic curve (AUROC), area 
under the precision-recall curve (AUPRC), accuracy, and 
F-measure.  

After training and calibration, the model achieved the 
following results on the test set (Table 1): 
 
Table 1. Performance of GPR-based Chagas detector after 
training and probability calibration 
 

Metric Score 
Challenge Score 0.058 
AUROC 0.143 
AUPRC 0.055 
Accuracy 0.070 
F-measure 0.130 

 
To assess classification performance, we examined the 

confusion matrix (Figure 1). The overall accuracy was 7%. 
The ROC curve (Figure 2) demonstrates the model’s 
inability to distinguish between Chagas disease and control 
cases across various thresholds, with an AUROC of 0.143. 

The precision-recall curve (Figure 3) provides more 
evidence of the model’s difficulty to identify positive 
cases, particularly in the context of class imbalance, with 
an AUPRC of 0.055. 

 
Figure 1. The confusion matrix shows the percentage of 
true positives, true negatives, false positives, and false 
negatives on the test set.  
 

Figure 2. Receiver operating characteristic (ROC) curve 
for the GPR model on the test set.  
 
4. Discussion and Conclusions 

The results indicate that, while the model was able to 
learn some discriminative patterns from the ECG features, 
overall performance was poor. The AUROC and AUPRC 
values suggest limited ability to distinguish between 
Chagas disease and control cases, and the Challenge score 
reflects the difficulty of the task on this dataset.  

To further understand model performance, confusion 
matrices and ROC curves were generated. The confusion 
matrix revealed a tendency of the model to favor the 
majority class, resulting in low sensitivity and Chagas 
disease detection. ROC and precision-recall curves 
confirmed the low discriminative power, with curves 
remaining close to the diagonal and baseline, respectively. 



 
Figure 3. Precision-recall curve for the GPR model on the 
test set. 
 

Analysis of feature importance indicated that heart rate 
variability metrics and QRS morphology contributed most 
to the model’s predictions. However, no single feature 
provided strong separation between classes, suggesting 
that additional or more sophisticated features may be more 
necessary. Inspection of misclassified cases showed that 
many false negatives occurred in records with subtle ECG 
abnormalities, while false positives were often associated 
with noisy or atypical signals. This highlights the challenge 
of detecting Chagas disease from ECG data alone and 
suggests that further improvements may require more 
advanced signal processing or integration of clinical 
metadata. Overall, the results demonstrate the feasibility of 
using GPR for automated Chagas disease detection from 
ECG signals but also underscore the need for further 
methodological enhancements.  

Future work will focus on expanding the feature set, 
optimizing model parameters, and exploring ensemble 
approaches to improve classification performance. We 
plan an additional analysis that incorporates an AI-based 
assessment of a 12-lead ECG for the detection of 
cardiomyopathy with low ejection fraction (EF <40%) by 
using a regulated, commercially available CNN algorithm 
[8].  Preliminary data has shown the feasibility of this CNN 
algorithm in a cross-sectional study within the SaMi-Trop 
cohort to detect Chagas cardiomyopathy on a 12 lead ECG 
with an accuracy of 83%[9]. By enriching for probable 
Chagas cardiomyopathy, we can determine how a higher 
pretest probability affects GPR discrimination, calibration, 
and positive predictive value / negative predictive value at 
fixed specificity and explore a simple combined GPR + 
low EF model. This analysis will indicate whether low EF-
based triage improves screening yield without inflating 
false positives.  

We anticipate that additional data and data-curation 
may help improve predictive ability of such models. For 

example, longitudinal ECG data from each patient before 
and after seropositivity. If available, following changes in 
ECG readouts during disease progression of patients 
receiving delayed treatment versus those who are in active 
treatment may allow detection of subtle changes over time. 
This could provide insight into occult signs of disease 
progression that precedes symptom manifestation (from 
conduction abnormalities and myocardial fibrosis 
occurring at much later stage). We must also be aware of 
factors that influence the training set, including ECG 
dataset obtained from various location (different endemic 
areas with varying disease prevalence), varying degrees of 
disease manifestation at the time of initial medical 
evaluation due to difference in access to care, and 
inaccuracies introduced from self-reported Chagas disease 
positive population.  
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