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Abstract

Atrial cardiomyopathy (AtCM) is associated with new-
onset atrial fibrillation (AF), higher AF recurrence rates
after pulmonary vein isolation (PVI), and increased risk
for ischemic stroke. Automated diagnosis of AtCM us-
ing electrocardiograms (ECGs) could enable non-invasive
screening of large cohorts. The amplified P-wave dura-
tion (APWD) holds potential for diagnosing and staging
AtCM. In this study, we propose a long short-term mem-
ory (LSTM) model to annotate APWD. The model’s train-
ing involved two phases: initial pretraining with weak la-
bels and subsequent training with expert labels. We inves-
tigated the effects of pretraining, trimming input signals,
and upsampling on the absolute error between predictions
and labels. The best-performing model was a bidirectional
LSTM with 16 hidden units using pretraining, no trimming,
and upsampling during training, resulting in absolute er-
rors of 13.9 ± 24.9, 15.4 ± 17.4, and 18.2 ± 19.8ms for
the P-wave onset, offset and duration, respectively. On the
independent data set, errors were 7.3 ± 7.4, 15.6 ± 16.5,
and 16.5 ± 21.1ms, accordingly. The model showed lit-
tle systematic bias and generalized well to unseen data.
In conclusion, this work demonstrates promising results
for the automation of AtCM diagnosis, suggesting poten-
tial for improved screening efficiency, ultimately enabling
improved patient management and outcome.

1. Introduction

Atrial cardiomyopathy (AtCM) is linked to incident
atrial fibrillation (AF), poor outcomes after pulmonary
vein isolation (PVI), and ischemic stroke. By analyzing
the amplified P-wave duration (APWD) on multi-channel
electrocardiograms (ECGs), atrial conduction delay in pa-
tients with AtCM can be quantified non-invasively [1–3].
Currently, APWD is annotated manually, which is time-
consuming and impractical for large-scale screening. Con-

sequently, there is a need for automated APWD annota-
tion for widespread adoption of this valuable metric. This
work aims to develop an algorithm to automatically mea-
sure APWD and validate it against manual expert annota-
tions.

2. Methods

Three data sets were utilized in this study: one for pre-
training, one for training, and one for validation.

The pretraining data set comprised 129,302 sinus
rhythm ECGs extracted from the MIMIC-IV database [4,
5], ensuring inclusion of only one ECG per patient.
214 ECGs from this database were excluded from pre-
training for inclusion in the training data set. All ECGs
were sampled at 500 Hz. Individuals were 57±20 years
old, 53 % were male, and for 1 % sex was unknown.

The training data set included 1,044 ECGs from vari-
ous patient groups representing different stages of AtCM:
314 ECGs from young individuals aged between 18 and
30 years from the MIMIC data set (214 ECGs, 500 Hz) [4,
5] and the PTB-XL database (100 ECGs, 500 Hz) [5–7],
212 ECGs acquired at 1 kHz from older cardiovascular pa-
tients at risk for AF (without diagnosed AF), 415 ECGs
with sampling frequency of 500 Hz from patients diag-
nosed with AF, and 103 ECGs acquired at 500 Hz from
AF patients with a left atrial thrombus. The mean age of
this cohort was 56±22 years, 58 % were male.

Independent validation data set: This data set contained
60 ECGs from patients who underwent PVI. This cohort
had a mean age of 63±10 years and 72 % of individuals
were male. All ECGs of the training and validation data
set were recorded at the Medical Center of the University
of Freiburg, all patients provided written informed consent.

Weak labels for the P-wave on- and offset generated
by ECGdeli [8] were used for pretraining. For training,
high-quality labels of APWD were provided by an ex-
pert. Each data set was split into 70 % training, 10 % val-
idation and 20 % test. For the training data set, cohorts



were distributed equally across these splits to ensure bal-
anced training. The independent data set included high-
quality annotations, reflecting the consensus of three ex-
perts, achieving an inter-observer agreement greater than
0.9.

To evaluate the model’s performance, the absolute er-
rors for P-wave onset, offset, and duration were calculated.
Moreover, an ablation study analyzing the effect of pre-
training, trimming the input template to the assumed rele-
vant region, and upsampling of the input, was conducted.

2.1. Data preprocessing

To eliminate P-wave variances between different heart-
beats, a single beat template was created for each lead from
each 10 second 12-lead ECG. Template generation con-
sisted of R-peak detection, RR-interval calculation, band-
pass (0.1–150 Hz) and notch (50/60 Hz) filtering, exclu-
sion of RR-interval outliers, creation of snippets corre-
sponding to individual heartbeats, PCA-based outlier re-
moval, and per-lead averaging of the remaining snippets.
These templates were the input for the models. The anno-
tation process involved assigning a sample-wise classifica-
tion for the P-wave class: labels were set to one for sam-
ples between the annotated P-wave onset and offset and
zero elsewhere.

2.2. Network architectures

This study examined long short-term memory (LSTM)
models, including both uni- and bidirectional LSTMs, with
configurations ranging from 4 to 64 hidden units. The
model architectures were structured with the following
layers: a masking layer, an LSTM or bidirectional LSTM,
followed by dropout (10 %), batch normalization, and a
dense layer with a softmax activation function. Dropout
and batch normalization were employed to prevent overfit-
ting and to stabilize learning. Categorical cross-entropy
loss was used for training with early stopping to avoid
overfitting. After the pretraining, all layers except the
dense layer were frozen. This layer was then retrained
to fine-tune the model’s final predictions. Hyperparame-
ter optimization was conducted using the Optuna frame-
work [9] to identify the optimal number of hidden units,
optimizer (Adam, RMSprop, SGD), batch size, learning
rate, and class weighting.

3. Results

The best-performing architecture was a bidirectional
LSTM with the following specifications: 16 hidden units,
class weighting of 20, batch size of 18, learning rate of
0.001, and Adam optimizer. This model was trained with-
out trimming the input but incorporated upsampling during

training to improve performance.

3.1. Upsampling and template trimming

Upsampling ECGs acquired at 500 Hz to 1 kHz, which
constituted approximately 80 % of the training data set,
slightly improved the P-wave duration error on the test set
by −5.4± 0.7%. However, when upsampling was applied
during the pretraining phase, it slightly increased the error
by 4.6± 1.4%.

The absolute error on the test set for the P-wave onset,
offset, and duration increased by 8.7±13.5, 1.4±5.3, and
4.5± 17.8%, respectively, when trimming the template to
the P-wave. Figure 1 depicts an input template, with the
sections discarded by trimming highlighted in red. Trim-
ming was conducted at the R-peak because the P-wave
should always precede the QRS complex. This targeted
trimming aimed to enhance model accuracy by focusing
the analysis solely on the P-wave region but increased the
error instead.
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Figure 1. ECG template. This figure shows a 12-lead
template that was used as the input for the model. The
red parts indicate the discarded parts of the template when
trimming the template to the region of interest.

3.2. Performance

Figure 2 illustrates the absolute errors of the final model
with and without pretraining on the ECGs withheld from
the training data set for testing. Pretraining reduced both
the mean absolute error and the standard deviation. The
absolute error for P-wave onset, offset, and duration were
reduced by −25.3±−34.0, −25.2±−34.1, and −30.3±
−37.7%, respectively.

Bland-Altman analysis identified a bias of 1.48 ms, with
a slight increase in error dispersion at higher mean values
(Figure 3). Analysis of the model’s performance on the
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Figure 2. Absolute errors with and without pretraining. Blue violin plots represent errors for the P-wave onset, offset, and
APWD without pretraining, while green plots represent errors with pretraining, respectively. Mean and standard deviations
are indicated above each plot.

different subgroups in the test set revealed the results de-
picted in Table 1. The model performed best in the young
individuals, followed by the patients with diagnosed AF,
and performed worst in the subgroup at risk for AF and in
patients with AF and left atrial thrombus.
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Figure 3. Bland-Altman plot for the test set and the
best-performing model. Errors between expert annotations
and model predictions for P-wave measurements are com-
pared. The plot illustrates the relationship between mea-
surement differences and their mean values.

To evaluate the model’s generalization to unseen data,
performance on the independent validation data set was
analyzed. The absolute errors for P-wave on-, offset, and
duration were 7.3± 7.4, 15.6± 16.5, and 16.5± 21.1ms,

respectively, see Figure 4. Notably, all errors on this data
set were lower than on the test set.

Onset Offset APWD

Young individuals 7.4± 7.1 10.8± 12.3 12.1± 11.9

At risk for AF 15.3± 24.6 13.6± 11.8 23.4± 25.5

AF diagnosis 12.0± 12.4 17.7± 15.9 18.9± 17.9

AF with
left atrial thrombus 37.5± 59.1 23.9± 33.4 23.3± 26.3

Table 1. Absolute error in ms per subgroup

4. Discussion

The effect of trimming the input templates resulted in
increased errors, suggesting a negative impact on model
performance. Although trimming shortens the template
and might prevent large annotation errors, such as anno-
tation of P-wave offset within QRS complex or T-wave,
the overall performance decreased. This indicates that the
model benefits from the temporal information provided by
the QRS complex and T-wave in relation to the P-wave.
LSTMs are specifically designed to account for temporal
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Figure 4. Absolute errors on the independent validation
data set for P-wave onset, offset, and duration. Means and
standard deviations are given in the legend.

relationships within data, and these relationships are bet-
ter utilized when the entire template is included as input.
Furthermore, the superior performance of the bidirectional
LSTM compared to the unidirectional version highlights
the value of capturing temporal dependencies in both di-
rections for this classification task.

Upsampling all ECGs to 1 kHz had minimal impact on
model performance, indicating that the model is not par-
ticularly sensitive to the temporal resolution of the input
data. While upsampling was hypothesized to potentially
enhance model accuracy by providing more detailed data,
these results suggest that such increased resolution does
not significantly affect performance during training. More-
over, the complexity introduced by upsampling during pre-
training decreased the model’s performance, possibly due
to difficulty in parameter convergence.

The results of the Bland-Altman plot suggest that there
is only little systematic bias in the model’s predictions.
However, the slight increase in error dispersion towards
larger mean values aligns with the observation that the
model’s performance was somewhat reduced for sub-
groups with very prolonged P-waves, such as thrombus
patients, compared to those with shorter P-waves, like in
the young subgroup. This indicates that while the model
performs well generally, improvements are necessary for
accurately predicting very long P-waves where differentia-
tion between low-amplitude parts of the P-wave and noise
is difficult.

The results from the independent data set surpassed
those of the test set, which could be attributed to the more
homogeneous nature of the independent data set consist-
ing only of AF patients undergoing PVI. The good results
on this data set suggest that the model is capable of gener-
alizing effectively to new data and is not overfitted to the

training data set.

5. Conclusion

This study presents a promising approach for the auto-
matic annotation of APWD, facilitating retrospective anal-
ysis and the screening of large cohorts. This development
has the potential to significantly enhance non-invasive risk
stratification of AtCM, ultimately contributing to improved
patient management and outcomes.
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