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Abstract

Chagas disease (American trypanosomiasis) is a ne-
glected tropical disease caused by the parasite Try-
panosoma cruzi. The disease can cause cardiac damage to
humans known as chronic Chagas cardiomyopathy (CCC),
manifesting as conduction blocks, arrhythmias, heart fail-
ure, and sudden death. The CODE-15% dataset con-
tains more than 300000 12-lead electrocardiogram (ECG)
recordings, but the labeled data in this dataset are mostly
weak, relying heavily on self-reported medical histories.
We introduce auxiliary pretraining, leveraging more de-
pendable labels, and subsequently perform fine-tuning on
SaMi-Trop, which includes serologically verified Chagas
patients, and PTB-XL, assumed to contain non-Chagas pa-
tients. The results show that the proposed model, when
pretrained on the CODE-15% dataset and then fine-tuned
with Sami-Trop and PTB-XL, attained an AUROC of 0.69,
an AUPRC of 0.22 on internal validation, and a challenge
metric of 0.040 on hidden validation. Conversely, training
only on CODE-15% and SaMi-Trop yielded an AUROC
of 0.81, an AUPRC of 0.41 on internal validation, and a
challenge metric of 0.316. These findings highlight a signif-
icant key limitation as the proposed pretraining strategy on
auxiliary labels from CODE 15% and fine-tuning on PTB-
XL and SaMi-trop offered no benefit and underperformed
relative to conventional methods.

1. Introduction

Chagas disease (American trypanosomiasis) is a ne-
glected tropical disease caused by the parasite Trypanosoma
cruzi. The disease is widespread in Latin America and has

spread globally via migration. Chronic Chagas disease
can lead to cardiac damage known as chronic Chagas car-
diomyopathy (CCC), manifesting as conduction blocks,
arrhythmias, heart failure, and sudden death [1f]. Unfortu-
nately, most infected individuals remain undiagnosed and
untreated. In many countries, less than 10% of Chagas
cases are detected and even often as little as below 1% [2]].
Early diagnosis is crucial, as antiparasitic treatment in the
indeterminate phase can prevent progression to cardiomy-
opathy. However, screening for Chagas currently requires
serological tests that are impractical for broad population
screening due to cost and infrastructure needs. The 12-lead
electrocardiogram is a commonly used and cost-effective
diagnostic tool that can be beneficial in the screening pro-
cess for Chagas disease. Characteristic ECG anomalies,
such as a right bundle branch block (RBBB) combined with
a left anterior fascicular block, atrioventricular conduction
blocks (AVB), and various arrhythmias, including atrial
fibrillation (AF), atrial flutter, and ventricular extrasystoles,
are frequently observed in patients with CCC [3].

Prior work has shown that deep neural networks can de-
tect hidden diseases or patient attributes from ECG signals,
such as predicting a patient’s age and sex [4]] or silent condi-
tions [5]], with high accuracy. Recently, Ribeiro et al. devel-
oped a deep learning model to detect Chagas disease from
ECG [6] and achieved an area under the ROC curve (AUC)
of 0.80 on the internal validation set, demonstrating the
promise of Al for ECG-based Chagas detection. However,
performance dropped on external data (AUC 0.59-0.68) and
the detection of Chagas in early, non-CCC cases, remains
limited. The authors noted that improving data quality
and incorporating additional patient information, like epi-
demiological risk factors, could enhance early detection. A



major challenge is the limited availability of extensive, high-
quality labeled data for Chagas disease. Although there are
large ECG databases such as the CODE dataset, which con-
tains millions of ECG records, the labels for Chagas disease
in these datasets are mostly weak, relying heavily on self-
reported medical histories. In contrast, smaller cohorts like
SaMi-Trop provide strong labels confirmed by serology but
cover only Chagas patients, lacking negative examples. In
our participation as the Cha-Cha-Chagas team in the 2025
George Moody Challenge [7,8], we aim to tackle these data
limitations. Our approach involves mitigating the limita-
tions associated with weak labels by employing auxiliary
pretraining that make use of more dependable labels.

2. Methods
2.1. Data

The datasets used are composed of multi-lead elec-
trocardiogram (ECG) recordings derived from three pri-
mary sources: CODE-15% [9], SaMi-Trop [10] and PTB-
XL [[11,/12]. Each ECG record included raw waveform
data alongside structured metadata, which contained vari-
ables such as patient age, sex, data origin, and binary out-
come labels indicating the presence or absence of Chagas
disease. It is important to note that in the CODE-15%
dataset, these Chagas disease labels were based on self-
reports. Conversely, in the SaMi-Trop dataset, the Chagas
labels were determined through serological testing, making
them more reliable compared to the self-reported labels in
CODE-15%. However, it should be considered that the
CODE-15% dataset might include ECG recordings from
individuals at an earlier stage of the disease. This can poten-
tially offer an opportunity to identify Chagas disease at an
earlier phase. The PTB-XL dataset, comprising 21,799 12-
lead ECG recordings, was collected in Germany throughout
the 1990s. Given the time period and geographical location
of these recordings, it is plausible to assume the absence of
Chagas disease patients within this dataset and the record-
ings can serve as control samples for the conducted study.

2.2.  Data Preprocessing

The signals underwent a resampling process to achieve
a frequency of 100 Hz and were uniformly adjusted to a
duration of 7 seconds. This 7-second duration was chosen
because it represents the shortest recording present in the
dataset, specifically from the SaMi-Trop dataset. Extending
these recordings via zero-padding to a length of 10 seconds
was avoided because such an action could unintentionally
result in data leakage. As SaMi-Trop exclusively consists
of positive cases, and the model might unintentionally learn
to classify all zero-padded ECGs as Chagas disease due to
the presence of these confounding zero-padded signals.

The selection of ECG leads was limited to limb leads
(LII and III) and precordial leads (V1-V6), because the
augmented limb leads are mathematically derived from
the frontal leads, thus offering no additional information
beyond what is already provided by the frontal leads them-
selves.

2.3.  Model Architecture

We implemented a 1D convolutional neural network with
an Inception Time architecture, which combines residual
connections, maintaining stable optimization in deeper net-
works, and parallel convolutional filters of varying receptive
fields, to capture temporal features of various lengths [|13]].
Figure [I[(a) illustrates the architectural design of the In-
ception Time network. Meanwhile, Figure[T[b) provides a
detailed view of an individual inception module, thereby
offering a closer examination of its components and struc-
ture.

2.4. Experimental Setup and Training

In order to determine the efficacy of using auxiliary pre-
training, an evaluation was conducted comparing two ap-
proaches. In the first approach, we used auxiliary pre-
training followed by fine-tuning on binary Chagas disease
labels, and in the second approach, we trained the model
from scratch solely on binary Chagas disease labels.

2.4.1. Auxiliary Pretraining and Fine-tuning

During the pretraining phase, the model was consistently
trained on the CODE-15% dataset, where various attributes,
namely age, gender, first-degree AVB, RBBB, left bun-
dle branch block, sinus bradycardia, sinus tachycardia and
atrial fibrillation were employed as target labels. The train-
ing extended over 15 epochs, and binary cross-entropy loss
was utilized for all classes, except for age, for which the
mean squared error was applied. After completing the
auxiliary pretraining, we froze all layers in the network,
removed the final layer, and replaced it with an unfrozen
single neuron with sigmoid activation. We then fine-tuned
the model on the SaMi-Trop and PTB-XL datasets. This
newly integrated output layer underwent further training
for an additional 30 epochs. To tackle the issue of class
imbalance (Nchagas << Nnon-Chagas)> €ach mini-batch was
carefully stratified to ensure an equal representation of Cha-
gas and non-Chagas cases. The number of iterations con-
ducted per epoch was calculated as round(%), with N
representing the total count of ECG recordings, and B be-
ing the designated size for each mini-batch. Because of
this batch balancing method, certain Chagas cases were
sampled multiple times within a single epoch.
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(a) The high-level architecture of the implemented
Inception Time model.

(b) The architecture incorporated within each inception module.

Figure 1: Overview of the Inception Time architecture and a detailed examination of the inception module model.

2.4.2. Conventional Training

In the conventional training methodology, the model was
exclusively trained on the Chagas label by utilizing the three
available datasets. Specifically, we conducted experiments
where various dataset was held out at a time to evaluate its
impact. The training extended over 15 epochs, employing
binary cross-entropy as the loss function, along with a bal-
anced batch strategy, similar to the technique employed in
the first training approach.

All experiments, both in first and second apporach, were
performed using AdamW optimizer [14] with n = 0.001
and a mini-batch size of 32. 15% of the dataset was al-
ways withheld as validation data and to ensure the best-
performing model was retained we saved the set of weights
that achieved the highest validation area under the precision-
recall curve (AUPRC) during the 15 epochsﬂ

3. Results and Discussions

To evaluate model performance, we employed four dis-
tinct dataset configurations on the external hidden validation
set. Among these, two configurations underwent an internal

1The code referenced in this paper can be accessed here: https :
//github.com/Bsingstad/GMC2025

validation, utilizing AUROC and AUPRC. The correspond-
ing results of the internal and external validation can be
found in detail in Table[I] The setup that relied solely on
the use of the SaMi-Trop and CODE-15% datasets, with
conventional training methods, demonstrated superior per-
formance compared to the results obtained from our pro-
posed approach, which incorporated auxiliary training tech-
niques. Several factors could explain the underperformance
by the proposed method. The first possible explanation
is related to the pretraining with auxiliary labels may not
have been relevant to the subsequent Chagas-label training,
resulting in the frozen feature extractor failing to extract
relevant features during fine-tuning. A second and more
plausible explanation is related to the finetuning, where all
negative labels are sourced from PTB-XL and all positives
are from SaMi-Trop, two separate datasets collected at dif-
ferent times and locations (SaMi-Trop from Brazil during
2011-2012 and PTB-XL from Germany during 1989-1996).
Differences in ECG acquisition and selection bias may in-
troduce unintended artifacts, which could be learned from
a model and make it act as a dataset classifier rather than a
Chagas classifier.

- e e e e e =
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Data used for | Data used for Fine-tune AUROC on internal | AUPRC on internal | Challenge metric achieved
pretraining or conventional training validation data validation data on hidden validation data
CODE-15% | SaMi-Trop and PTB-XL 0.69 0.22 0.040

- SaMi-Trop and PTB-XL - - 0.066

- CODE-15% - - 0.143

- SaMi-Trop and CODE-15% | 0.81 0.41 0.316

Table 1: Performance comparison of models trained with different pretraining and fine-tuning datasets. AUROC and AUPRC
are reported on internal validation data, while the challenge metric reflects performance on hidden validation data.

4. Conclusions and Future work

In this study, we investigated whether auxiliary pretrain-
ing on weakly labeled ECG data from CODE-15% could
improve Chagas disease detection when combined with
fine-tuning on serologically verified SaMi-Trop patients
and presumed non-Chagas PTB-XL controls. Contrary to
our expectations, this method underperformed relative to
conventional training approaches, especially when training
only using CODE-15% and SaMi-Trop. These results un-
derscore the model’s susceptibility to the dataset’s composi-
tion, especially when positive and negative labels originate
from distinct populations, acquisition methods, or temporal
contexts. Future research should consider these biases and
develop strategies to mitigate the influence of acquisition ar-
tifacts when combining datasets from varied global regions
and populations.
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