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Abstract 

Wolff Parkinson White (WPW) syndrome, a significant 

cause of ventricular pre-excitation, presents diagnostic 

challenges in patients where early detection is crucial to 

prevent life threatening arrhythmias. The condition is 

characterized by electrocardiogram (ECG) features such 

as a short PR interval and a delta wave. Although 

traditional rule-based interpretation algorithms and 

feature-based machine learning (ML) models exist, they 

often lack the accuracy required for consistent and reliable 

WPW diagnosis. This study evaluates an end-to-end deep 

learning (DL) model for automated WPW detection from 

10-second 12-lead ECGs in patients under 17 years old, a 

presentation that is relatively rare, compared to a ML 

model. Our results show that the DL model substantially 

outperforms the feature-based ML model, demonstrating 

superior accuracy in identifying pediatric WPW. To 

address the “black box” nature of DL, we applied Shapley 

additive explanations (SHAP) to improve model 

transparency. SHAP analysis visually highlights critical 

ECG segments, such as the delta wave, that most influence 

the model’s decisions. This explainable AI-powered DL 

model provides clinicians with a powerful, transparent 

tool for precise WPW diagnosis, supporting improved 

clinical risk stratification and management. 

 

1. Introduction 

Wolff Parkinson White (WPW) syndrome, 

characterized by ventricular pre-excitation (VPE) due to 

the presence of an accessory atrioventricular pathway, is a 

recognized cause of supraventricular tachycardia and, in 

some cases, sudden cardiac death in young individuals 

under 17 years of age [1]. The prevalence of pediatric 

WPW in the general population is estimated at 0.1 to 0.3 

percent, making it comparatively rare and challenging for 

the development of automated detection algorithms [1], 

[2]. Early and accurate identification of WPW from a 

standard 10-second 12-lead electrocardiogram (ECG) is 

critical for risk stratification and treatment planning, 

particularly in pediatric patients, where subtle variations in 

ECG morphology, age-related changes in conduction, and 

accessory pathway location can complicate diagnosis. 

Pediatric WPW diagnosis relies on detecting 

characteristic ECG features such as a short PR interval, 

prolonged QRS duration, abnormal QRS morphology, and 

the presence of a delta wave. However, children often 

display normal developmental variations on their ECGs, 

which can obscure these features and lead to false-positive 

interpretations. Previous studies report substantial 

interobserver variability in interpreting pediatric ECGs for 

pre-excitation, highlighting the need for robust automated 

approaches [1]. Automated rule-based algorithms and 

feature-based machine learning (ML) models have been 

developed for pediatric WPW detection [1], [3], but these 

methods may often be limited by fixed thresholds, 

handcrafted features, and difficulties in generalizing across 

diverse pediatric ECG presentations, particularly in the 

presence of noisy ECGs or atypical morphologies. 

Recent advances in ML and deep learning (DL) have 

transformed automated ECG interpretation [4], [5], [6]. 

While feature-based ML methods depend on manual 

extraction of morphological and rhythm parameters, end-

to-end DL models learn relevant features directly from raw 

ECG waveforms, bypassing the need for extensive 

preprocessing. This paradigm shift has led to significant 

improvements in tasks such as arrhythmia detection, 

conduction block classification, age group classification, 

and ECG-based patient phenotyping [4], [6]. Despite these 

successes, the “black box” nature of DL models remains a 

barrier to clinical adoption. For pediatric WPW detection, 

where treatment decisions can involve invasive 

electrophysiological studies or ablation, explainability and 

transparency are crucial for clinician trust. 

To address this, interpretable AI techniques such as 

Shapley Additive Explanations (SHAP) have emerged [7], 



[8], providing quantitative insights into feature importance 

and local decision reasoning. Such approaches not only 

enhance model transparency but also enable validation 

against established ECG criteria, bridging the gap between 

data-driven predictions and clinical interpretability. 

In this study, we present and evaluate an end-to-end DL 

model for automated detection of pediatric WPW from 10-

second 12-lead ECGs. Our work makes two primary 

contributions: (1) we compare the diagnostic performance 

of a feature-based ML model and our proposed end-to-end 

DL model; and (2) we integrate SHAP-based 

interpretability to identify and highlight ECG segment 

importance driving the model’s predictions. Our results 

demonstrate that the DL model outperforms feature-based 

ML model. The SHAP analysis highlights physiologically 

relevant regions, such as the QRS upstroke and delta wave 

morphology. This enhances both the accuracy and 

explainability of automated pediatric WPW detection. 

 

2. Methods 

2.1. Dataset and Preprocessing 

Digital 10-second 12-lead ECGs were retrospectively 

gathered from pediatric patients (<17 years old) across 

multiple institutions as part of a cohort study. All ECGs 

were annotated by board-certified pediatric cardiologists 

for the presence or absence of VPE consistent with WPW 

syndrome. The diagnosis was based on established criteria, 

including a short PR interval, widened QRS complex, 

slurred upstroke of the QRS, delta wave morphology, and 

absence of normal septal Q waves in lateral leads [9]. 

Cases with uncertain interpretation were excluded to 

ensure a high-confidence reference standard. 

The pediatric training database (n = 772) included 36 

ECGs with WPW, 492 normal ECGs, and conduction 

defect cases with right bundle branch block (RBBB, n = 

232) and left bundle branch block (LBBB, n = 11). The 

independent test set (n = 764), including 18 WPW ECGs, 

was randomly sampled from the same source and 

contained WPW cases not present in the training set. 

All ECGs were sampled at 500 Hz with 5 µV resolution. 

For the end-to-end DL model, two types of inputs were 

used: (1) the raw 10-second 12-lead ECG waveform 

(RawECG) and (2) the 1.2-second 12-lead averaged 

representative beat (RepBeat). The RepBeat was generated 

using the Philips DXL algorithm, a commercially available 

and widely used method, by averaging beats of similar 

morphology, resulting in a noise-reduced waveform that 

highlights key diagnostic features. Both RawECG and 

RepBeat signals were normalized lead-wise prior to model 

training. 

For comparison, the performance of both the ML and 

DL models was systematically evaluated by measuring 

their agreement with annotations provided by pediatric 

cardiologists on an independent test set, allowing for a 

direct assessment of their diagnostic accuracy. 

 

2.2. Data Augmentation and Automation 

To improve robustness and generalization, the DL 

model was trained with a random combination of three data 

augmentation techniques: cutout, dropout, and scaling, 

applied using a modified RandAugment automation 

framework [4], [5], [8], [10]. During each training 

iteration, one of the three techniques was selected with 

equal probability (0.333). Cutout set a contiguous segment 

of up to 10% of the signal to zero at a random time across 

all leads. Dropout randomly set 5% of signal values to zero, 

simulating transient loss. Scaling adjusted the amplitude 

by randomly compressing or stretching the signal 

uniformly across all leads. Figure 1 shows the visual effect 

of each augmentation on the ECG waveform. 

 

 
Figure 1. Data augmentation techniques incorporating cutout, 

dropout, and scaling applied to lead II. 

 

2.3. Algorithm and Model Architecture 

In this study, we adopted a comprehensive strategy to 

accurately detect WPW from pediatric 12-lead ECGs by 

evaluating both feature-based ML and end-to-end DL 

methods. The first approach uses a feature-based ML 

model, while the second employs an Attention Residual 

Network (AResNet) architecture, taking RawECG and 

RepBeat as inputs for end-to-end DL. 

The feature-based ML model was implemented using a 

decision tree for pediatric WPW detection, incorporating 

the following features: delta wave score; R-peak time of 

the Frank lead vector magnitude signal; frontal plane QRS 

axis; QRS duration; PR segment; maximum frontal plane 

P-wave vector magnitude; spatial QRS-T angle at maximal 

vector magnitude; logarithm of age; Q-wave area in lead 

V6; spatial QRS-T angle at the mean point of the vector 

loops; and PJ interval [1]. As shown in Figure 2, the 

AResNet-based architecture is designed for accurate WPW 

detection using DL. The network begins with a 1D 

convolutional layer followed by batch normalization, 

Exponential Linear Unit (ELU) activation, and max 

pooling. It then processes the input through four sequential 

residual stages. Within each residual block, convolutional 

layers, batch normalization, ELU activation, dropout (p = 

0.3), and an attention mechanism are applied to enhance 

informative features. Downsampling layers are included 

when required to match dimensions. After the final 



residual stage, the model applies both adaptive average 

pooling and adaptive max pooling, concatenating their 

outputs. The concatenated features are flattened and passed 

to a fully connected layer to produce the final output. For 

binary WPW classification, the model outputs a single 

logit, which can be converted to a probability using the 

sigmoid function during inference. Binary cross-entropy is 

used as the training loss to optimize classification 

performance. The development process, including data 

preparation, model building, training, evaluation, testing, 

augmentation, and process orchestration, was facilitated by 

Python packages like PyTorch, Scikit-Learn, SciPy, and 

the Waveform Database (WFDB) toolkit. 

 

 
Figure 2. The proposed architecture of the end-to-end Attention 

ResNet-based deep learning model. 

 

2.4. Training and Performance Evaluation 

The AResNet model underwent training for 50 epochs 

with a batch size of 16, employing the Adam optimizer 

with an initial learning rate of 0.0001 and a 10% decay 

scheduled every 10 epochs. The model that achieved the 

highest F1 score during training was selected for testing. 

For WPW detection, performance metrics including 

sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), accuracy, and F1 score 

were calculated. 

 

2.5. Explainability 

Although end-to-end DL models typically outperform 

traditional rule-based algorithms and feature-based ML 

approaches, their intricate architectures and non-linear 

decision processes often render them difficult for human 

interpretation [4]. This opacity has earned them the label 

of “black box”. To gain insight into the internal 

mechanisms of our AResNet model and identify the ECG 

features critical for WPW detection, we applied SHAP [7], 

[8], a robust interpretability method that quantifies the 

contribution of each input ECG signal to the model’s 

output. In the context of ECG binary classification using 

the AResNet model, SHAP helps reveal which specific 

segments or patterns in the ECG signals most significantly 

influence the model’s detection decisions. 

 

3. Results 

Our experiments were performed on a powerful desktop 

computer equipped with an Intel Core i9-12900K 

processor clocked at 3.5 GHz, 64 GB of RAM, and an 

NVIDIA GeForce RTX 3080 Ti GPU to accelerate DL 

model processing. Table 1 details the performance metrics 

for the feature-based ML model and the end-to-end 

AResNet model using both RepBeat and RawECG inputs 

for pediatric WPW detection. The AResNet model trained 

on RawECG data achieved the best results for WPW 

detection. It posted an F1 score of 0.743, a sensitivity of 

0.813, a specificity of 0.992, a PPV of 0.684, an NPV of 

0.996, and an accuracy of 0.988. This represents a 

significant improvement in the F1 score: a 26.15% relative 

increase over the feature-based ML model (0.589) and a 

5.24% relative increase over the AResNet model trained 

with RepBeat data (0.706). These results confirm that the 

end-to-end DL approach substantially outperforms the 

conventional feature-based ML model for pediatric WPW 

detection. Furthermore, the superior performance of the 

AResNet model using RawECG compared to the one using 

RepBeat suggests that longer raw ECG segments contain 

more critical clinical information than averaged beats. This 

information is essential for capturing the dynamic changes 

in cardiac electrical activity characteristic of WPW. 

 

Table 1. Performance comparison of feature-based 

machine learning and end-to-end deep learning models for 

pediatric WPW detection. 
Algorithm / 

Model 
Sens. Spec. PPV NPV Acc. F1 

Feature-

based  

ML 

0.625 0.989 0.556 0.992 0.982 0.589 

AResNet 

with 

RepBeat 

0.750 0.992 0.667 0.995 0.987 0.706 

AResNet 

with 

RawECG 

0.813 0.992 0.684 0.996 0.988 0.743 

 

SHAP analysis was applied to determine which 

morphological characteristics of the ECG the AResNet 

model prioritizes when identifying WPW syndrome. 

Figure 3 presents an example of the resulting feature 

importance map generated from the AResNet model using 

the RepBeat input. Given the morphology focused nature 

of WPW and to enhance visual clarity, only the RepBeat 

     

      

         

   

         

      

         

   

       

      

         

 
    

 
    

  
  

   

         

     

       

              

              

              

              

   

   

   

   

       

         

       

      

    

      

       

 
 
  

 
 
 



based SHAP results are shown; RawECG results were 

omitted due to space constraints. SHAP scores were 

normalized to a 0 to 1 scale and visualized as a heatmap 

overlay on the ECG trace, where red highlights areas of 

highest relevance and blue represents minimal influence. 

Dot size corresponds to the magnitude of feature 

contribution. For clarity, the figure includes only the leads 

with the highest overall SHAP scores, selected 

automatically. The analysis shows that the model 

consistently focuses on hallmark WPW indicators, most 

notably delta wave morphology and prolonged QRS 

duration, closely matching recognized diagnostic 

guidelines. These results support the model’s clinical 

relevance and its consistency with established ECG 

interpretation standards. 

 
Figure 3. Feature importance visualization using SHAP 

with RepBeat input for model interpretability. 

 

4. Discussion and Future Work 

We designed and assessed two methods for identifying 

pediatric WPW syndrome using standard 10-second 12-

lead ECGs: a feature-based ML model and an end-to-end 

deep learning model. Our findings indicate that the DL 

model based on AResNet achieved significantly higher 

performance in detecting pediatric WPW related ECG 

patterns compared to the feature-based ML approach. To 

improve model transparency and support clinical decision 

making, we utilized the SHAP explainability method to 

highlight important ECG features and waveform regions 

such as delta wave morphology and prolonged QRS 

duration that the model relies on for its predictions. 

This study has some limitations and offers several 

opportunities for future research. First, because the dataset 

comes only from the United States, it is important to 

evaluate the model on datasets from multiple centers that 

include diverse populations and countries to confirm its 

general applicability. Second, further investigation and 

systematic comparison of additional explainable AI 

methods such as Grad-CAM, LIME, and other advanced 

techniques could help improve interpretability. Third, 

combining both qualitative expert assessments and 

quantitative measures will provide a more complete 

evaluation of these explainable AI approaches. Future 

studies will focus on validating the ML and DL models on 

larger and more diverse populations and geographic 

regions, examining performance differences across 

demographic and clinical categories, integrating the DL 

model with clinical information to support personalized 

care for pediatric WPW patients, and applying explainable 

AI to identify novel features for more robust feature-based 

ML models. 
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