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Abstract

The study aims to evaluate machine learning models
for fetal ECG (fECG) reconstruction and R-peak detection
from abdominal ECG (aECG) signals, focusing on the im-
pact of input channel quantity on model accuracy. Three
models were developed: Model I, a CNN-based AutoEn-
coder with 128 LSTM units and a self-attention module;
Model II, a CNN-based AutoEncoder with 128 LSTM units
and Bahdanau Attention; and Model III, a Transformer en-
coder with a CNN-based decoder. Using all four aECG
input channels, Model I achieved an F1-score of 93.39%,
Model II 96.71%, and Model III 96.06%. Model III had
the lowest error rates (MSE: 0.0181, MAE: 0.0960). With
a single aECG input channel, Model I’s F1-score dropped
to 88.86%, Model II to 90.04%, and Model III to 92.84%,
with Model III again showing the lowest error rates. This
suggests that Model III is better suited for fECG recon-
struction and fetal R-peak detection, regardless of input
channel quantity.

1. Introduction

Currently, several types of cardiac defects may occur
during fetal heart development, with approximately 1 in
every 125 newborns per year having some form of con-
genital heart malformation [1]. Regarding the etiology of
congenital heart defects (CHDs), 85% to 90% of cases are
reported to be attributed to external influences, while a mi-
nority are due to genetic factors. Moreover, the most se-
vere defects commonly arise during the embryonic stage,
particularly within the first eight weeks of gestation [2].

Therefore, prenatal monitoring is essential for early di-
agnosis, which enables improved care and increases the
fetus’s chances of survival during the postnatal period [3].
Several monitoring techniques are available, both inva-
sive and non-invasive, including auscultation, cardiotocog-
raphy (CTG), fetal electrocardiogram (fECG) using fetal
scalp electrodes, and non-invasive fetal electrocardiogram
(NI-fECG) [4]. The FHR (Fetal Heart Rate) can be ob-
tained by analyzing the interval between consecutive R-
peaks, where the R-peak is part of the QRS complex of the
cardiac cycle, that indicates ventricular depolarization and

atrial repolarization [5] [1].

Aiming to integrate the processing block of a system
under development at FCTE-UnB for obtaining the FHR
and fECG using only maternal abdominal ECG (aECG)
signals, we studied several approaches for R-peak and
fECG extraction, generally divided into two categories:
Combined Sources (CS), which use electrodes placed on
the maternal abdomen and thorax to subtract the maternal
ECG (mECG) signal from the aECG in order to isolate the
fECG; and Abdominal Electrodes Sourced (AES), which
rely solely on the aECG signal [4]. Since the aECG sig-
nal is composed of mECG, fECG, and noise [4], this work
aims to extract the fECG component from the aECG and
detect the R-peaks to monitor the FHR.

The analysis of electrocardiograms has been increas-
ingly optimized using artificial intelligence. In the context
of CHDs, an example is the early detection of anomalies
based on the NI-fECG signal and FHR during the prena-
tal period, which can even indicate the type of malforma-
tion present [6]. Artificial neural networks can be used
to extract this information from the aECG [4]. Networks
composed of convolutional layers are commonly used to
extract relevant features from target signals [7]. In ad-
dition, recurrent neural networks (RNNs) are capable of
processing temporal sequences and encoding information
about the entire input signal. An implementation strategy
involves the use of encoder–decoder models, which encode
the input to retain essential information during processing
and then decode it [8].

In this context, the objective of this work is to apply re-
current neural networks to detect and mark R-peaks and
extract fECG from aECG. Consequently, the study is or-
ganized into four specific objectives: (1) demonstrate how
effective the proposed models are at classifying R-peaks
compared to those found in the literature; (2) enable the
models to extract fetal R-peak features directly from the
aECG, without using any mECG information; (3) compare
the precision and fECG extraction capability when using
four aECG channels as model input versus using only a
single input channel; (4) use the same benchmark datasets
commonly cited in the literature for model training and
evaluation to ensure fair performance comparison.



2. Methods

In this study, three models based on recurrent neural net-
works were made for the detection of the fetal R-peak and
the fECG extraction. Initially, a preprocessing step was
applied to the signals to eliminate unwanted noise and re-
duce computational cost. Subsequently, performance met-
rics were defined for model evaluation, followed by the
development of the final model architecture.

2.1. Dataset

The dataset used in this work was the A&D fECG (ab-
dominal and direct fetal electrocardiogram) dataset [9],
which consists of five signal sets collected from different
pregnant women between the 38th and 41st weeks of ges-
tation: r01, r04, r07, r08, and r10. Each set includes five
channels: four corresponding to aECG signals and one to
fECG, invasively collected via fetal scalp electrodes. Each
recording has a duration of five minutes and a sampling
frequency of 1 kHz. Additionally, each dataset includes
manually annotated fetal R-peaks by clinical experts. Dur-
ing preprocessing, it was observed that the r10 set con-
tained segments without R-peak annotations (188s – 190s;
203s – 210s), which were therefore removed.

2.2. Preprocessing

To prepare the dataset, GNU Octave was used to apply
a Butterworth band-pass filter to the aECG signals, with
cutoff frequencies set between 1 Hz and 100 Hz, removing
unwanted noise while preserving both mECG and fECG
components [10]. Then, the sampling rate was downsam-
pled to 200 Hz, and the signals were segmented into one-
second sections to reduce the computational load during
processing. Finally, the signals were normalized. Only
segments containing at least one annotated fetal R-peak
were selected and divided into 70% for training, 15% for
validation, and 15% for testing. An example of an input
aECG signal is four aECG channels and a fifth channel
representing the invasively collected fECG used for train-
ing, with manually annotated R-peaks.

2.3. Metrics

During model training, the metric used for R-peak de-
tection was accuracy, which measures the ratio of correct
predictions to the total number of predictions. Another
metric used for model evaluation was the F1-score, which
provides the harmonic mean of precision and recall [11].

For a more comprehensive analysis in the test set, we
used the F1-score, PPV, SE, and ACC metrics for R-peak
detection, as well as MSE and MAE during validation and
training of the fECG reconstruction.

Given that the signal duration is 1 s and the QRS com-
plex typically lasts between 70 ms and 100 ms, a tolerance
margin of 10% was applied to the F1-score and accuracy
calculations on the test set 5% to the left and 5% to the
right of the actual R-peak instant [12]. A threshold of 0.5
was applied to the model’s outputs to determine whether a
prediction was considered valid.

The binary cross-entropy loss function, which measures
the discrepancy between predicted and actual labels in bi-
nary classification tasks [8], was used during model train-
ing and validation for R-peak labeling. And the loss func-
tion for the fECG reconstruction we used was MSE.

2.4. Model’s architecture

Model-I consists of an attention-based autoencoder built
with convolutional layers and LSTM units. The first stage
is an encoder composed of four 1D convolutional layers,
with filter counts and kernel sizes as follows: 32, 9 × 9;
32, 6×6; 64, 6×6; and 128, 3×3. Each layer applies L1
regularization to the filters to reduce the risk of overfitting.
After each convolution, batch normalization layers are ap-
plied to normalize the outputs during training, thereby im-
proving model convergence [8]. Subsequently, the ReLU
non-linear activation function is applied. A max-pooling
operation is used in the last three convolutional layers to
halve the size of their outputs. In addition, 128 LSTM
units are used to learn the temporal dependencies and fea-
tures extracted by the encoder. The decoder is composed of
three convolutional layers, also with L1 regularization, and
kernel sizes of 128, 3×3; 64, 3×3; and 32, 3×3, respec-
tively. The up-sampling function is applied three times to
double the signal length at each step, restoring the origi-
nal input dimensions. Batch normalization and ReLU ac-
tivation are used in the decoder in the same way as in the
encoder. After the signal is reconstructed by the decoder,
a self-attention head is applied to extract the most relevant
features from the reconstructed signal. The model outputs
are generated by a final 1D convolutional layer, with a sig-
moid activation function that provides the probability of an
R-peak at each sample point and an ELU function for the
fECG reconstruction.

Model-II features an architecture similar to Model-I,
comprising the same encoder and decoder, and using 128
LSTM units. However, it replaces the self-attention head
with a layer based on the Bahdanau Attention mechanism,
positioned after the LSTM units and before the decoder.
This layer generates a context vector from the LSTM out-
put and its hidden states. The output layers of this model
are the same as those in the first model.

Model-III consists of an encoder with two 1D convolu-
tional layers, each using filters of size 128, 3× 3. In addi-
tion, it includes a Transformer Encoder structure, compris-
ing a Multi-Head Attention (MHA) mechanism followed



by a normalization layer placed between the Transformer’s
input and the MHA output. Two feedforward dense layers
are included: the first with 256 neurons and ReLU acti-
vation, and the second with 128 neurons. A second nor-
malization layer is applied between the output of the first
normalization layer and the output of the last dense layer.
Subsequently, a CNN-based decoder is employed, featur-
ing two convolutional layers with filters of size 128, 3× 3
and 64, 3× 3, along with Batch Normalization and ReLU
activation applied between the layers, which are connected
via an UpSampling function. The output layers are identi-
cal to those used in the previous models.

The three models were trained using the Adam opti-
mizer with a learning rate of 5 × 10−4. Training was per-
formed over 150 epochs for every model with a batch size
of 32, on Google Colaboratory.

3. Results and Discussion

We conducted a comparison between state-of-the-art ap-
proaches and the proposed models for fetal R-peak de-
tection, as shown in Table 1. All methods considered
used only a single input channel. The table presents the
F1-score achieved by each model, along with the respec-
tive datasets employed: A&D FECG (Abdominal and Di-
rect fECG) [9] and PCDB (PhysioNet Challenge Database)
[13]. This shows that the proposed models are equivalent
to state-of-the-art approaches.

Table 1. Comparison between the proposed models and
the state of the art.

Model F1-score Dataset
Dual Attention AE [14] 98, 01% A&D FECG
U-Net [15] 93, 01% PCDB
Model-III 92, 84% A&D FECG
SFTF-GAN [16] 90, 05% A&D FECG
Model-II 90, 04% A&D FECG
Model-I 88, 86% A&D FECG

With confusion matrices, we computed the performance
metrics presented in Tables 2 and 3. Based on these results,
we compared the models with each other and assessed the
impact of using multiple input channels versus a single in-
put channel. From Table 2, Model-II achieved the best per-
formance for R-peak detection when using four input chan-
nels, with an F1-score of 96.71%. However, Model-III
achieved the lowest error rate in the reconstruction of the
fECG signal, a MSE equal to 0.0181 with four aECGs as
inputs. Model-I underperformed on all evaluation metrics,
indicating that autoencoder-based models require more ro-
bust architectures, as performed in [14].

The R-peak detection comparison between all models
is illustrated in the Figure 1 (e), (f) and (g). One can

Figure 1. Exemple of a detection of fetal R-peaks and
fECG reconstruction. (a) One channel aECG as input; (b)
Model-I’s predicted fECG; (c) Model-II’s predicted fECG;
(d) Model-III’s predicted fECG; (e) Model-I’s predicted R-
peaks; (f) Model-II’s predicted R-peaks; (g) Model-III’s
predicted R-peaks.

Table 2. Performance of the models when four aECG
channels were used as input.

Model-I Model-II Model-III
F1-score 93.39% 96.71% 96.06%
PPV 99.17% 98.69% 98.89%
SE 88.24% 94.80% 93.38%
ACC 97.30% 98.60% 98.34%
MSE 0.0217 0.0198 0.0181

see that all three models had good accuracy in detecting
the R-peak. Furthermore, it is shown in Figure 1 (b),
(c) and (d) the differences for reconstructing a fECG sig-
nal. The Table 3 shows that Model-III remained efficient
in both detection and reconstruction tasks, indicating that
Transformer-based architectures are capable of handling
the task more effectively. However, Model-II showed a
significant drop in its accuracy when using only one input
channel, with a decrease of approximately 6% in F1-score



and more than 11% in Sensitivity.
In the case of Model I, an unexpected behavior was ob-

served, as the fECG reconstruction capacity did not de-
crease; on the contrary, a slight improvement was ob-
served.

Table 3. Performance of the models when one aECG chan-
nel was used as input.

Model-I Model-II Model-III
F1-score 88.86% 90.04% 92.84%
PPV 97.23% 98.00% 98.00%
SE 81.82% 83.27% 88.19%
ACC 95.51% 95.97% 97.02%
MSE 0.0214 0.0202 0.0193

4. Conclusion

Model-I performed below the other two models in both
conditions, but was able to maintain its quality in fECG
prediction even with only one aECG as input. Model-II,
despite the highest F1-score with all channels, struggled
with reduced input. Model-III consistently performed well
in both reconstruction and detection tasks across input con-
figurations, making it the most robust and comprehensive
solution. Moreover, it contains a number of parameters
comparable to the first and lower than the second. This
suggests that Model-III is better suited for fECG recon-
struction and detection of the fetal R peak, regardless of the
input channel quantity, since its F1 score was only reduced
3.22%, while maintaining its MSE below 0.02. For future
work, modifications should be made so that the model can
be used in real-time applications.
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