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Abstract

To model variability of cardiac action potentials (APs),
a population of models (PoM) consisting of different sets
of a model’s parameter values can be created and cal-
ibrated to match observed variability in properties such
as AP duration. However, producing appropriate param-
eter sets for the PoM can be difficult and time-consuming.
We adapted a particle swarm optimization (PSO) opti-
mization technique to generate a population of models
efficiently. Our population PSO (PPSO) algorithm dis-
courages convergence to a local minimum, and instead
guides the search to explore low-error areas of parame-
ter space, yielding many parameter sets that can repro-
duce the variability of biomarkers seen in real tissue data.
Using canine ventricular microelectrode recordings and a
synthetic dataset, we extracted sets of APD-and voltage-
based biomarkers, allowing +10% and +30% variations
of the base biomarker values to represent variability. We
created 5000- and 2500-member PoMs fitting the param-
eters of the Fenton-Karma (FK) and ten Tusscher-Noble-
Noble-Panfilov (TNNP) models to the biomarker rangess
using PPSO. Compared to a random approach, our novel
PPSO method produced PoMs matching biomarkers with
similar coverage of parameter space for both the FK and
TNNP cases, but with greater computational efficiency, ac-
cepting up to 10 times more candidate parameter sets.

1. Introduction

Different patients exhibit considerable variability in car-
diac electrophysiological properties, which can result in
differing responses to cardiac interventions. For this rea-
son, it has become important for in silico testbeds to con-
sider variability within the models they include to capture
the wide range of outcomes from potential treatments and
to improve predictions [1]. One popular approach creates a
population of models (PoM) by generating parameter sets
that match certain biomarkers measured from data, such as
various APD values at different thresholds, resting mem-
brane potential, and peak voltage, thereby reproducing the
observed variability in real-world data [2, 3].

Although the PoM approach is beneficial, it poses a

computational challenge to produce a population of param-
eter sets that fall within the desired ranges for the chosen
biomarkers. Current approaches to generating these mod-
els include starting from a baseline parameter set and ran-
domly varying those values [4] or simply randomly gener-
ating parameter sets in their entirety [2], and then selecting
those sets which meet the specified criteria. Often, a large
number of candidate solutions must be considered to pro-
duce a relatively small number of acceptable candidates,
such as on the order of 2% [2].

In this paper, we present a novel algorithm to gener-
ate PoMs more efficiently. Our algorithm is motivated by
particle swarm optimization (PSO), a derivative-free opti-
mization method that seeks a balance between improving
solutions locally and exploring the search space broadly.
PSO is an especially appealing base approach because of
its computational efficiency, including the algorithm’s par-
allelism. To generate a PoM instead of a single optimum,
our population PSO (PPSO) method ensures that high-
quality solutions are spread throughout the search space.
This process allows the creation of a diverse population
similar to one obtained through random search to be gen-
erated, but at a much lower computational cost.

2. Methods

2.1. Models

In this paper, we construct populations of models using
two base models: the Fenton-Karma (FK) model [5] and
the ten Tusscher-Noble-Noble-Panfilov (TNNP) model [6,
7]. The FK model is a phenomenological model consist-
ing of three variables representing voltage and two gating
variables along with fast inward, slow inward, and slow
outward currents. The TNNP model is a more detailed
model that represents a human ventricular cell using 19
variables and 12 transmembrane currents. In the present
study, all of the FK model’s 13 parameters are allowed to
vary when generating a population of models, whereas for
the TNNP model only the 12 conductance or other current
scaling parameters are included.

The FK model was solved using forward Euler. For
the TNNP model, forward Euler was used for the voltage



along with the Rush-Larsen method [8] for the gating vari-
ables and an analytical technique for the calcium buffer-
ing [9]. The timestep was 0.01 ms for both models.

2.2. Population PSO Algorithm

Our algorithm builds on particle swarm optimization
(PSO), a derivative-free optimization algorithm that func-
tions by creating a randomly initialized pool of candidate
solutions (particles) that explore the search space [10].
Each particle has a velocity vector, which is used to up-
date its position. The velocity of each particle is updated
based on known low-error locations: the lowest-error po-
sition observed by any particle during the algorithm (the
global best), and the lowest-error position the particle be-
ing updated has ever personally occupied (local best).

The PPSO algorithm begins by generating a set num-
ber of candidate parameter sets and evaluating their fitness
with respect to the biomarkers, as described below. The K
lowest-error particles (where K is a user-selected number
of “groups”) are then used to seed each group, and particles
are permanently assigned to the nearest group based on the
L? norm of the difference vector of normalized parameter
values. PSO is run within each group. Following each
fitness evaluation, any particles that fall within the spec-
ified tolerances for each biomarker are accepted into the
population. The algorithm is run until a maximum num-
ber of iterations is reached, or until the desired population
size has been reached. For the PoM sizes and biomarkers
discussed in this paper, the algorithm normally completes
within a small handful of iterations, usually five or fewer.

2.3. Data, Biomarkers, and Fitness

For the FK model case, we used a dataset derived from a
microelectrode recording of canine endocardial tissue APs.
The voltage values were normalized to match the output of
the FK model, and then the biomarkers used by PPSO were
calculated from this reference data. For the TNNP model
scenario, the dataset was generated from the model itself
using a previously published parameter set for epicardial
data. In both cases, a cycle length of 500ms was used. For
these preliminary results, we used four biomarkers: peak
voltage (Vpeak), maximum upstroke velocity (dV/dtmax),
APDS8O0, and APD20. For the TNNP model case, an ad-
ditional biomarker, peak intracellular calcium concentra-
tion, was used. Within the PPSO algorithm, each parti-
cle’s fitness was calculated as the mean relative error of the
biomarker values calculated using the associated parame-
ter values with respect to these reference biomarker values.
From these baseline values, we considered PoMs with high
and low variability as allowing +30% and +10%deviation
from these values, respectively, to be accepted into the
population.

2.4. Implementation Details

Our PPSO algorithm utilized 4096 particles and K = 40
for all cases and sought to build a population of size 5000
and 2500 for the FK and TNNP cases, respectively. All
biomarkers were measured from two successive APs at a
single cycle length. To mitigate transient initial conditions
of the models, the FK and TNNP models were paced each
iteration for four and 13 APs, respectively, before using the
following two APs for error calculation.

Parameter bounds were selected to allow a sizable
search space, assuming limited prior knowledge. The
random approach used for comparison with PPSO ran-
domly selected parameter values within the same param-
eter bounds and tested whether the resulting biomarkers
were within the specified tolerances; if so, the parameter
set was accepted into the population.

Efficiency calculations represent averages over ten runs
except for the low-variability random searches, which
were both taken from single representative runs due to their
high computational cost.

3. Results
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Figure 1. 500 randomly selected action potentials from
5000-member FK model PoMs generated by random
search (top) and PPSO (bottom) with tolerances of 10%
(orange) and 30% (blue). Black: reference canine dataset
from which the biomarkers were generated.

Figure 1 shows samples from the PoMs generated us-
ing a random-search approach and the PPSO method with
the FK model. Both methods produce similar distributions
of action potentials for both the high- and low-variability
cases (blue and orange, respectively). Moreover, as shown
in Figure 2, the parameter values of the random- and



PPSO-generated PoMs have similar characteristics with
comparable coverage of parameter space, so that although
PPSO is derived from an optimization method, it does not
produce a population that has converged to a small region
of the search space.
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Figure 2. Spread of normalized parameter values for all
members of 5000-member FK model PoMs generated via
random search and PPSO for the low-variability (10% tol-
erance) scenario.

In terms of efficiency, for the FK model with high vari-
ability, a random search required 27,198 simulations to
create a PoM with 5000 members, while PPSO required
9,181 simulations, meaning acceptance rates of 18% and
54%, respectively. Thus, PPSO provided a computational
savings of a factor of three. For the more constrained low-
variability scenario, random search required 213,001 simu-
lations to build a PoM of the same size (2.3% acceptance),
whereas PPSO required 23,292 simulations, an almost ten-
fold increase in efficiency (21% acceptance).

For the TNNP PoM scenario, Figure 3 shows exam-
ple action potentials from random search and the PPSO
method. Similar variability in action potential shapes and
durations can be seen for populations generated using the
same biomarker variability levels (high variability, 30%,
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Figure 3. 500 randomly selected action potentials from
2500-member TNNP model PoMs generated by random
search (top) and PPSO (bottom) with tolerances of 10%
(orange) and 30% (blue). Black: reference synthetic
dataset from which the biomarkers were generated.

in blue and low variability, 10%, in orange). As with the
FK model, the values of the parameters within the popu-
lations obtained using random search and PPSO were also
comparable, as shown in Figure 4, indicating both meth-
ods achieve similar coverage of parameter space and that
PPSO.

As for efficiency in the TNNP scenario, for the high-
variability case, a random search required 16,921 simu-
lations to create a PoM with 2500 members (14.7% ac-
ceptance), compared with 12,949 for PPSO (19.3% accep-
tance). In the low-variability case, random search required
247,812 simulations (1.0% acceptance), whereas PPSO re-
quired only 33,248 (7.5% acceptance), an improvement of
a factor of 7.5 over the random approach.

4. Discussion

Our results demonstrate that our new PPSO algorithm is
capable of generating large and diverse populations of car-
diac models with variability comparable to random search
with greater efficiency, thus requiring far fewer simula-
tions, particularly under tighter biomarker constraints. Es-
pecially for mechanistic models of interest whose simula-
tion time can be quite long, this rapid generation of PoMs
could facilitate large-scale simulation studies of virtual pa-
tient cohorts with properties specified by the biomarker
ranges.

While our prelimnary results show PPSO is suitable for
generating FK and TNNP PoMs, and the algorithm is not
model-specific, further study is required to verify PPSO’s
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Figure 4. Spread of normalized parameter values for all
members of 2500-member TNNP model PoMs generated
via random search and PPSO for the low-variability (10%
tolerance) scenario..

suitability for other models, as well as its performance with
more biomarker constraints.

PPSO also relies on a good selection of initial groups,
and more in-depth initial optimization strategies for that
selection may be necessary for broader applications. For
example, neither the original group assignments nor the
acceptance criteria contain any mechanism preventing very
similar parameter sets from being generated. While further
investigation is likely warranted, we have not observed this
to be an issue in practice. In addition, it is possible that
correlations across parameters exist in PPSO PoMs that are
absent from those generated by random search. Although
we have not observed such correlations thus far, further
study may be necessary.

Overall, PPSO offers an efficient and robust alternative
to previous methods of cardiac PoM generation under spe-
cific biomarker constraints with potential applications in
research as well as clinical modeling.
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