
Detecting Chagas Disease Using a Vision Transformer–based ECG Foundation
Model

Lore Van Santvliet1, Phu Xuan Nguyen1, Bert Vandenberk2,3, Maarten De Vos1,4

1STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of
Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium

2Department of Cardiology, University Hospitals Leuven, Leuven, Belgium 3Department of
Cardiovascular Sciences, KU Leuven, Leuven, Belgium 4Department of Development &

Regeneration, KU Leuven, Leuven, Belgium

Abstract

Foundation models (FMs) are reshaping machine learn-
ing and, by extension, computational cardiology. By
exploiting large, heterogeneous, and possibly unlabeled
datasets through self-supervised learning, these models
scale to large model parameter counts and provide highly
expressive feature extraction capabilities. Such pretrained
feature extractors are particularly promising for down-
stream applications in low-data settings, including rare
disease detection.

In this work, we demonstrate the use of a vision
transformer–based FM for clinical 12-lead electrocardio-
grams (ECGs) as a prescreening tool for Chagas disease,
in the context of the “Detection of Chagas Disease from the
ECG: The George B. Moody PhysioNet Challenge 2025”
(team Biomed-Cardio). Using cross-validation on the pub-
lic training data, our method achieves 0.490±0.008 for the
challenge metric. On the hidden validation set, it reaches
0.445, placing [...] out of [...] teams.

These results highlight the value of extensive pretrain-
ing for learning robust ECG representations, and their ef-
fectiveness in downstream Chagas detection. At the same
time, this work underscores the challenges of applying
FMs to unseen datasets, where distribution shifts and other
pitfalls must be carefully addressed.

1. Introduction

Foundation models (FMs) are increasingly applied
in computational cardiology to address complex down-
stream tasks such as electrocardiogram (ECG) classifi-
cation [1]. These models are typically pretrained using
self-supervised learning, exploiting large, heterogeneous
datasets that may be unlabeled or labeled for unrelated
tasks. During pretraining, the goal is to learn robust,
general-purpose feature representations. Only in the sub-

sequent fine-tuning stage are task-specific labels required.
This partial decoupling of task-agnostic feature learning
and task-specific learning enables the training of larger and
more expressive models than would be feasible with super-
vised learning alone, where limited labeled data constrain
model complexity.

Chagas disease, a parasitic condition endemic to Latin
America, is associated with electrophysiological abnor-
malities [2]. Whereas serological testing remains the gold
standard for diagnosis, ECGs can be used for non-invasive
population screening, in order to optimize the allocation of
limited testing capacity. Motivated by the robust and trans-
ferable feature representations learned by ECG FMs, we
investigate the use of a vision transformer (ViT)–based FM
[3], integrating feature representations from all intermedi-
ate encoder layers, to detect Chagas disease from clinical
12-lead ECGs in the 2025 George B. Moody PhysioNet
Challenge [4, 5].

2. Methods

2.1. FM terminology

The term “foundation model” has been used with vary-
ing definitions [1]. In this work, we adopt two criteria:
(1) pretraining with self-supervised learning, and (2) ex-
tensive pretraining on a dataset larger than those used in
downstream applications. Our FM meets both criteria: it
was pretrained using generative self-supervised learning,
and the pretraining dataset contained 400 365 samples, in-
deed exceeding the downstream training set of 369 267
samples in size, although only by a limited margin.

2.2. FM pretraining

We used a one-dimensional (ViT)–based FM composed
of an encoder with 12 transformer blocks and a decoder



Figure 1. Architecture of the classification model. Its three
main constituents, the foundation model (FM) encoder,
demographic (dem.) encoder, and classification (class.)
head, are depicted in blue, with the number of model pa-
rameters noted in the bottom left corner. Architectural de-
tails (output dimension for linear layers and dropout prob-
ability for dropout layers) are added between brackets. In-
puts and outputs of each part are depicted in green, with
their size noted in the bottom right corner. X and X’ de-
note the original and modified feature vector, respectively.

with 4 blocks. It processes 12-lead ECGs of length 1 000
samples and sampling frequency 100 Hz, using a patch size
of 50 samples. The encoder outputs a 768-dimensional
feature vector, which is subsequently fed into the decoder.

Pretraining followed the spatio-temporal masked ECG
modeling (ST-MEM) framework [6], in which 75% of the
input patches were randomly masked. The FM was trained
to reconstruct the masked patches using a mean squared
error loss. For further details on the FM architecture, and
pretraining datasets and procedure, we refer to [3].

2.3. FM fine-tuning

The final classification model used the FM encoder as a
feature extractor. Using the Aggregation-of-Layers (AoL)
scheme [3], intermediate feature vectors were extracted
from all 12 encoder layers and aggregated via average
pooling to produce a 768-dimensional feature representa-
tion. This vector was then shifted and scaled by the output
of a demographic encoder, a multi-layer perceptron (MLP)
that receives sex (binary encoding) and age (in centuries)
as input. An MLP with hidden dimension of 512 was used
as a classification head. The architectures are illustrated in
Figure 1.

Model fine-tuning for the Chagas detection task was

Augm. Property Sampling interval Unit
Powerline f [50± 0.2] ∪ [60± 0.2] Hz

inter- ϕ [0, 2π] rad
ference SNR [15, 30] dB

Cropping L1 [5.65, 10] s
Shifting L2 [0±min(1, (10− L1))] s

Table 1. Implementation details of augmentation (augm.)
techniques. f , ϕ and SNR refer to frequency, phase and
signal-to-noise ratio of the powerline interference, respec-
tively. L1 depicts the remaining signal length after crop-
ping, and L2 depicts the shifting length along the time axis.
Variables are drawn from the indicated intervals using uni-
form sampling.

performed using the public training datasets provided by
the challenge: PTB-XL [7], CODE-15% [8], and SaMi-
Trop [9]. ECG lengths vary between 5 and 11 seconds,
and all ECGs, with original sampling frequencies of 400
or 500 Hz, were resampled to 100 Hz. Label certainty dif-
fers across datasets: negative PTB-XL labels and positive
SaMi-Trop labels are considered highly reliable, reflect-
ing the disease localization and serological testing, respec-
tively, whereas mixed CODE-15% labels are self-reported
and thus less reliable. To account for this uncertainty, we
introduced soft labels for CODE-15%, setting positive la-
bels to 0.8 and negative labels to 0.2, while retaining strong
labels (0 and 1) for PTB-XL and SaMi-Trop.

We used a weighted binary cross-entropy loss function
for fine-tuning, assigning a weight of 5 to positive cases
to address class imbalance. Additionally, we implemented
weighted sampling, oversampling positive Chagas samples
by a factor of 5. The fine-tuning phase started with frozen-
backbone training, in which only the classification head
was trained for 2 000 iterations, using a learning rate of
2× 10−4 and batch size 64. Next, all model weights were
unfrozen, and the full model was fine-tuned for 12 000 iter-
ations with a learning rate of 2× 10−5 and the same batch
size.

2.4. Data augmentation

A key difficulty in this challenge is the final out-
of-distribution evaluation on hidden validation and test
datasets with unknown origin. Subtle dataset-specific cues,
particularly the frequency of powerline interference, might
be beneficial for performance in the training dataset, but
possibly lose all value for detection in new datasets.

To build in robustness against this potentially unreliable
confounder, we implemented a powerline interference aug-
mentation strategy during fine-tuning. More specifically,
we randomly added synthetic powerline noise around ei-
ther 50 or 60 Hz to training samples. The augmentation



Training Validation Test Ranking
0.490± 0.008 0.445 [...] [...]/[...]

Table 2. Challenge scores for our selected entry (team
Biomed-Cardio), including the ranking of our team on the
hidden test set. We used 5-fold cross validation on the pub-
lic training set, repeated scoring on the hidden validation
set, and one-time scoring on the hidden test set.

included variable frequency, phase and signal-to-noise ra-
tios (SNRs) to mimic realistic powerline interference of
moderate amplitude (see Table 1 for implementation de-
tails). The second and third harmonics of this powerline
noise were also added, with a random phase and a SNR
that is equal to half and one third of the main SNR, respec-
tively. The augmentation was applied with a probability of
0.5, and identical noise was added across all 12 ECG leads.

Random cropping and temporal shifting of the ECG
were implemented as additional augmentation strategies.
Positive and negative temporal shifting are equivalent to
adding zero padding prior to or after the signal, respec-
tively. Implementation details are provided in Table 1.
This augmentation was applied to all training samples dur-
ing fine-tuning, identically across all 12 ECG leads to pre-
serve physiological consistency. After cropping and shift-
ing, all signals were zero-padded to reach a length of ex-
actly 10 seconds. We also experimented with cutmix aug-
mentation and manifold mixup, but these strategies did not
yield noticeable improvements for this task and were there-
fore not included in the final implementation.

2.5. Model selection and evaluation

Our algorithm was evaluated through five-fold cross-
validation on the challenge training set, with mean and
standard deviation of the challenge metric, top5%-true
positive rate (top5%-TPR), the area under the precision-
recall curve (AUPRC), the area under the receiver op-
erating characteristic curve (AUROC) and the F1 score
reported across folds. For out-of-distribution evaluation
on the hidden evaluation and test sets, we randomly di-
vided the public training set into an internal training (80%)
and holdout (20%) subset. The internal holdout subset
was used for model selection, choosing the model with
the highest top5%-TPR. The prevalence of Chagas in the
top5% ranked by our model is calculated as top5%-TPR×
p/0.05, where p is the endemic Chagas prevalence (as-
sumed 0.02).

3. Results

Our ECG FM achieves an out-of-distribution validation
set top5%-TPR of 0.445. The prevalence of Chagas in the
top5% of this hidden validation set, provided by our algo-

rithm, is 0.178. The training set top5%-TPR obtained via
cross validation equals 0.490 ± 0.008 (0.381 ± 0.003 for
frozen-backbone training only), AUPRC 0.252 ± 0.008,
AUROC 0.867± 0.001, and F1 score 0.116± 0.002. The
most important results are summarized in Table 2.

Between an initial submission, which already included
cropping and shifting augmentations but none of the other
described tweaks, and our final model, we increased our
challenge score on the hidden validation set by 5% (from
0.395 to 0.445). In terms of performance within the public
training set, the difference between this initial and final
submission was notably less pronounced (only 2.7%).

4. Discussion and Conclusions

4.1. Utility of the ECG FM

Applying our Chagas detection model for prescreening,
and selecting the identified top5% for testing, the pro-
portion of infected individuals receiving serological tests
would amount to 44.5%, representing a nearly nine-fold
improvement over the random baseline level of 5%. The
obtained Chagas prevalence of 0.178 in the top5% means
that the expected number of individuals that need to be
tested serologically, in order to detect one Chagas-infected
individual, is decreased from 50 (with baseline prevalence
0.02) to 6, when using our prescreening tool. Put differ-
ently, the fraction of serological tests spent on uninfected
individuals, rather than serving the identification of in-
fected individuals, would decrease from 98% under ran-
dom selection (with endemic prevalence 0.02) to 82.2%
when guided by our algorithm, markedly improving the
efficiency of limited testing resource usage.

The performance that was obtained when training solely
the classification head, and keeping the FM backbone
weights frozen, illustrate the strong feature extraction ca-
pabilities of the FM. Even though the masked model-
ing pretext task is unrelated to the Chagas detection task,
the FM’s feature representations after pre-training already
proved particularly useful as-is for this downstream task.
Nevertheless, end-to-end fine-tuning of the model still in-
creased the top5%-TPR by approximately 11%.

4.2. Limitations of the ECG FM

The overlap between pretraining and fine-tuning data is
substantial, as both CODE-15% and PTB-XL appear in
both stages. Further expansion and diversification of the
pretraining dataset would likely strengthen its foundation
character in two ways. First, a larger dataset would enable
scaling up the encoder, facilitating the discovery of more
subtle and complex ECG representations. Second, more
diverse input data would potentially improve generalizabil-
ity, making the model applicable across a wider range of



downstream tasks, demographic groups, and diseases.
More advanced aggregation methods than average pool-

ing could be used for feature aggregation from all 12
FM encoder layers. The gating-based Mixture-of-Layers
scheme, proposed in [3], is a promising alternative to the
AoL scheme used in this work, potentially allowing even
more optimized feature representations.

4.3. Mindful FM application

There is a notable difference in the effect of certain
tweaks within the training set, compared to the hidden val-
idation set. One possible explanation for this could be
found in hidden confounders, and in particular a difference
in the extent to which they are present in the challenge’s
training and validation set.

In this context, this challenge illustrates one of the key
pitfalls when applying expressive deep learning models,
caused by their black-box nature. Their high flexibility not
only enables strong performance but also increases the risk
of potentially unknowingly relying on such hidden con-
founders, which becomes particularly problematic when
evaluating in out-of-distribution settings.

In the challenge, for instance, spurious cues such
as the original sampling frequency or the presence and
type of powerline interference could artificially boost in-
distribution performance but fail under external evaluation.
Addressing such vulnerabilities requires careful consider-
ation of such confounders and implementation of mitigat-
ing techniques, which can be as simple as resampling and
powerline noise augmentations. Explainability techniques
could potentially reveal additional hidden confounders that
may underlie the persistent gap between in-distribution
and out-of-distribution performance, and could therefore
be a valuable future extension of the FM.

4.4. Conclusions

We demonstrate the use of a ViT–based ECG FM, pre-
trained with an ST-MEM objective, for Chagas detection.
Our approach integrates a demographic encoder to adapt
FM features with age and sex information. To address class
imbalance and label uncertainty, we combined weighted
oversampling, a weighted binary cross-entropy loss, and
soft labeling. Robustness was further enhanced through
data augmentation strategies, including powerline interfer-
ence, cropping and shifting.

Our algorithm achieved a 0.445 top5%-TPR in the
George B. Moody Challenge of 2025, demonstrating the
potential of a ViT–based ECG FM as non-invasive and
scalable Chagas prescreening tool in resource-limited en-
demic regions. Beyond this specific task, our findings
highlight the broader promise of FMs for computational
cardiology, while also underscoring the need for careful

fine-tuning and confounder control in real-world applica-
tions.
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