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Abstract

Fetal acidosis is a key clinical precursor to hypoxic-
ischemic encephalopathy (HIE) and an important marker
of impaired fetal oxygenation during labor. Fetal moni-
toring via cardiotocography (CTG), which records uterine
pressure (UP) and fetal heart rate (FHR), is a standard
of care, yet its interpretation is subjective. In this work,
we propose the Sequential Variational Autoencoder with
Transfer Entropy Bottleneck (SeqVAE-TEB), a novel VAE
model designed to capture the directed and lagged influ-
ence of UP contractions on subsequent FHR responses.
SeqVAE-TEB is trained in a predictive setting, forecasting
future FHR to emphasize clinically meaningful coupling
between UP and FHR. For the classification task, we train
the model on acidosis cases and healthy cases with blood
gas, and test and evaluate its generalization on unseen HIE
cases and other healthy subgroups. Our model maintains
robust specificity across different healthy subgroups and
provides early sensitivity in detecting acidosis and cases
at risk of developing HIE.

1. Introduction

Hypoxic ischemic encephalopathy (HIE) is a severe
neonatal condition caused by insufficient oxygen and
blood flow to the infant’s brain during the perinatal period.
It is one of the leading cause of neonatal mortality and long
term neurodevelopmental impairment. A key precursor to
HIE is fetal acidosis, defined by low umbilical cord pH
or high base deficit, which directly reflects impaired fetal
oxygenation and metabolic stress [1]. Acidosis is more
common than HIE and provides a clinically meaningful
window for early detection and intervention before neu-
rological injury becomes irreversible. HIE, in turn, can be
viewed as the most severe progression of acidosis, associ-
ated with more profound hypoxia and poorer outcomes. As

such, accurate and early detection of acidosis is very im-
portant in intrapartum monitoring. [2]. Cardiotocography
(CTG), which records maternal uterine pressure (UP) and
fetal heart rate (FHR), is the standard non-invasive method
for intrapartum fetal surveillance. Certain FHR patterns
have been associated with hypoxia in clinical guidelines,
particularly late or prolonged decelerations; bradycardia
or tachycardia; and reduced variability [3]. However, the
visual interpretation of CTG remains subjective and incon-
sistent, with poor inter- and intra-observer agreement [1].

Machine learning approaches have recently emerged as
promising tool for analyzing CTG signals. These methods
can identify subtle temporal patterns and physiologic rela-
tionships that are difficult to detect visually. Among them,
unsupervised representation learning has shown particular
utility in modeling biomedical time series, enabling the ex-
traction of compact, informative features for downstream
classification and risk prediction tasks. Variational Au-
toencoders (VAEs) offer a principled probabilistic frame-
work for such representation learning [4]. Despite these
advances, most prior work has primarily focused on the
FHR signal, while clinical interpretation of CTG routinely
incorporates both UP and FHR. Uterine contractions are
frequently followed, with a physiological delay, by FHR
decelerations. This directed and lagged relationship is clin-
ically important, as it reflects the fetus’s adaptive response
to maternal uterine activity and provides an early indicator
of hypoxic stress. To explicitly model this coupling, we
leverage the concept of transfer entropy, an information-
theoretic measure that quantifies directed information flow
between time series [5].

In this paper, we propose the Sequential Variational
Autoencoder with Transfer Entropy Bottleneck (SeqVAE-
TEB), a novel framework that integrates the predictive
power of VAEs with an explicit bottleneck designed to cap-
ture the directed influence of UP on FHR. The Transfer
Entropy Bottleneck (TEB) is an information theoretic ex-



tension of the variational information bottleneck that ex-
plicitly constrains the latent space to retain only the pre-
dictive information flowing from a source process to a tar-
get process [6] Unlike traditional reconstruction-based ap-
proaches, our model is trained in a predictive setting, fo-
cusing on forecasting FHR conditioned on uterine activity.
This predictive formulation emphasizes the causal role of
uterine contractions in shaping FHR dynamics, aligns with
clinical practice. Furthermore, we evaluate model gener-
alization on HIE cases as the most severe manifestation of
acidosis, providing additional validation of our approach.

2. Methods

In our prior work [7], we introduced the Sequential Vari-
ational Autoencoder (SeqVAE), a probabilistic deep learn-
ing framework inspired by variational recurrent neural net-
works (VRNNs), to model FHR signals for the early de-
tection of HIE. The SeqVAE was designed to capture tem-
poral dynamics while encouraging smoother and more in-
formative latent representations. We demonstrated that
SeqVAE produced physiologically meaningful latent fea-
tures and showed promising discriminative performance
in distinguishing between healthy and HIE outcomes. In
this paper, we have considered the UP signal as a second
source of information to make the latent space more infor-
mative. Moreover, to emphasize UP-FHR coupling during
pretraining, we used a prediction task rather than recon-
struction. We used a large-scale cardiotocography (CTG)
dataset consisting of over 250,000 singleton births sam-
pled at 4Hz [8]. We defined two groups of clinical out-
comes: (i) healthy deliveries with no neurological symp-
toms, and (ii) adverse outcomes including acidosis (um-
bilical artery pH< 7.0 or base deficit≥ 10mmol L−1) and
HIE which is defined as acidosis plus neurological signs. It
is important to note that acidosis is identified exclusively
through cord blood gas measurements, which are gener-
ally only available after delivery. Thus, while acidosis
provides the most direct evidence of impaired fetal oxy-
genation, it cannot be observed prospectively during la-
bor and serves here as a post hoc marker for evaluating
model performance. For model pre-training, we selected
20,968 healthy vaginal deliveries with blood gas. For clas-
sification, we trained and tested with data not seen dur-
ing pre-training. We used 2,988 healthy vaginal deliveries
with blood gas and 1,981 acidosis vaginal deliveries for
training, and reserved for testing all 391 HIE cesarean sec-
tion (CS) and vaginal deliveries and 1217 acidosis cases
with CS. Moreover, we performed auxiliary tests on sev-
eral clinically relevant subclasses that were not included
during training as well. These included healthy deliver-
ies without blood gas (500 vaginal and 500 CS records),
and 500 healthy deliveries with blood gas but delivered
via CS. The no blood gas subgroup represents the major-

ity of deliveries in the full dataset. Consequently, model
performance on this group has substantial clinical impact
specifically reduced false positive rates in this set translate
to fewer unnecessary interventions across a large number
of deliveries. These analyses assessed the generalization
capability of the SeqVAE-TEB model beyond the train-
ing distribution and provided insight into its robustness
across different clinical scenarios. The UP and FHR sig-
nals were segmented into 20min epochs, each correspond-
ing to 4,800 samples.

Preprocessing Step: In TEB context, the UP signal is
regarded as the source time series denoted as X , while the
FHR signal is treated as the target time series denoted as
Y . We applied the wavelet scattering transform to both UP
and FHR signals. The scattering transform extracts multi-
scale, translation-invariant representations of the signals
while preserving physiologically relevant frequency dy-
namics. The resulting scattering coefficients were subsam-
pled by a factor of 16, which reduces redundancy and im-
proves computational efficiency while retaining relevant
temporal structures. These transformed time series were
used as input to the SeqVAE-TEB model.

SeqVAE-TEB Model: The proposed Sequential Vari-
ational Autoencoder with Transfer Entropy Bottleneck
(SeqVAE-TEB) extends our earlier SeqVAE framework
by reformulating the learning objective from signal re-
construction to time series prediction. Unlike reconstruc-
tion, prediction presents a substantially more difficult chal-
lenge; the model must capture the underlying temporal
dynamics and anticipate delayed dependencies between
the source and target signals. The prediction task is de-
fined as forecasting the next two minutes of FHR activ-
ity conditioned on the UP and FHR histories. To ad-
dress this task, SeqVAE-TEB integrates the TEB frame-
work, which explicitly quantifies the directed influence of
the source signal (UP) on the target signal (FHR). The en-
coder, qϕ(z | Xpast, Ypast), learns a latent distribution z con-
ditioned jointly on the source and target histories, while
the conditional prior, rψ(z | Ypast), captures the distribu-
tion conditioned only on the target history. The Kullback–
Leibler (KL) divergence between these distributions con-
strains the latent space to retain only the additional predic-
tive information contributed by the source, therefore serv-
ing as a variational upper bound on transfer entropy. The
decoder, pθ(Yfuture | z, Ypast), then predicts the future tra-
jectory of the FHR signal from the latent representation.

Training Objective: The model is trained by optimiz-
ing a loss function that balances prediction fidelity with the
information bottleneck constraint:

L = Eqϕ
[
− logpθ (Yfuture | z, Ypast)

]
+ β KL

(
qϕ(z | Xpast, Ypast) ∥ rψ(z | Ypast)

)
, (1)

where the first term encourages accurate prediction of the



Figure 1: SeqVAE-TEB model block diagram.

future FHR signal, while the second term enforces the TEB
constraint by ensuring that the latent space captures only
the minimal predictive information from UP about FHR
based on the minimum necessary information principle
[6]. The hyperparameter β governs the trade-off between
predictive accuracy and the TEB regularization term and
regulates the strength of the transfer entropy bottleneck. A
large β can overly suppress source (UP) to target (FHR)
information and discard useful UP contributions, while a
small β may fail to enforce the minimum necessary infor-
mation (MNI) principle and allow irrelevant or redundant
UP features to leak into the latent space. Figure 1 illus-
trates the block diagram of SeqVAE-TEB model.

Classification Extension: We use a LSTM-based clas-
sification head for the task of distinguishing healthy and
abnormal cases. Specifically, the model leverages the
learned TEB-informed latent representations, which cap-
ture both the directed dependencies of UP on FHR and the
FHR characteristics that are not predictable from UP. After
pre-training on the prediction objective, we froze the VAE
backbone, and trained the lightweight multi-layer LSTM
head. This two-stage training strategy ensures that the dis-
criminative task benefits from the physiologically mean-
ingful latent features learned during prediction and bene-
fits from large healthy datasets to pre-train the mode.

Latent Representation and Classification Protocol:
After pretraining SeqVAE-TEB in the predictive setting,
we froze the model and extracted latent representations for
each epoch independently. These latent vectors were then
passed to the classification head, which outputs the prob-
ability of the epoch being healthy vs. acidosis. For each
record, the predictions were aggregated between epochs as
follows: if an epoch was classified as acidosis, all subse-
quent epochs up to delivery were marked as acidosis. In
contrast, a record was considered healthy only if no epoch
before delivery was flagged as acidosis. Such aggrega-
tion reflects the clinical principle that once fetal compro-
mise is detected, the pregnancy is considered at risk un-
til delivery. To control the false positive rate (FPR), we
adopted a validation-based calibration strategy. Specifi-

cally, we tuned the decision threshold on the validation set
to achieve a desired FPR within one hour of delivery. This
calibrated threshold was then applied to the test set, and
all reported figures and performance metrics are based on
the test evaluation. While the CS rate in the United States
is approximately 32% based on the National Center for
Health Statistics (NCHS), we adopted a more restrictive
operating point and set the allowable FPR to 0.2 in order
to minimize unnecessary interventions while maintaining
clinically useful sensitivity.

3. Results and Discussion

For robust evaluation, we performed 10-fold cross-
validation at the record level, with 90% training, 5%
validation, and 5% testing partitions. We restricted the
pre-training of SeqVAE-TEB to the last 12 hours prior
to birth, enabling the model to learn predictive repre-
sentations when clinically relevant intrapartum dynamics
should be most present. For training the classifier, only the
last 6 hours before delivery were used to minimize the ef-
fect of weak labeling. The labels are weak since initially
healthy fetuses may deteriorate over time and transition to
abnormal states, even though the entire record is labeled
according to the final outcome. During evaluation, all test
results are reported on the last 12 hours prior to delivery.

Auxiliary Subclass Analysis In addition to the main
classification task, Figure 2a reports specificity stratified
by the blood-gas criteria, while Figure 2b illustrates the
specificity across all healthy records when stratified by CS
status. In all figures, the solid curves represent the average
specificity over 10-fold cross-validation, and the shaded
regions denote the range between the minimum and max-
imum values observed across folds. The results demon-
strate that the model achieves comparable performance
across all subgroups. Importantly, the specificity reduces
gradually to near 0.8 during the final hour before delivery.
Figure 2c presents the specificity for healthy records with-
out blood gas, stratified by CS status. The model demon-
strates consistently slightly better performance between 8
and 2 hours before delivery, particularly for the no CS
subgroup. However, both subgroups converge to the de-
sired operating point, with specificity near 0.8 during the
final hour before birth. Figures 3a and 3b present the sen-
sitivity results for acidosis and HIE subgroups, stratified
by CS status. The model was trained exclusively on aci-
dosis cases with vaginal deliveries; acidosis with CS and
HIE cases were excluded during training. Despite this, the
sensitivity profiles across subgroups show broadly simi-
lar trends. For acidosis without CS, the sensitivity was
near 0.4 in the final hour before delivery, while for aci-
dosis with CS and HIE cases, it was between 0.3 and 0.4.
Notably, the HIE subgroup exhibits narrower confidence
bounds across the 10 folds, suggesting more consistent
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Figure 2: Test specificity for healthy records (a) stratified
by blood-gas criteria (b) stratified by CS criteria and (c) no
blood gas alone, stratified by CS criteria.

performance. This is particularly noteworthy for the HIE
no CS subgroup, as these cases were by definition missed
by clinicians during labour, which indicates the potential
advantage of the model in enabling earlier detection.

4. Conclusion

In this work, we introduced SeqVAE-TEB, a predic-
tive VAE based framework that incorporates the transfer
entropy bottleneck to explicitly model the directed influ-
ence of UP on FHR dynamics. By reformulating the learn-
ing objective from reconstruction to prediction, the model
learns to predict next two minutes of FHR from the latent
respresentation which encodes the history of FHR con-
ditioned on UP. Evaluation on the CTG dataset demon-
strated stable specificity across diverse healthy subgroups
and consistent sensitivity for acidosis detection, with gen-
eralizable performance on unseen HIE cases.
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