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Abstract

Electrophysiological action potential models have be-
come useful in clinical applications, offering deep insights
into the behavior of complex biological phenomena when
combined with tools such as uncertainty quantification and
sensitivity analysis. However, their application is often
hindered by high computational costs, particularly when
extensive model sampling is required for fitting and de-
ploying patient-specific models. This study explores the
use of three kinds of surrogate models - Neural Networks,
Polynomial Chaos Expansions and Gaussian Processes -
as efficient alternatives to reduce computational overhead
while maintaining accuracy in modeling action potential
in ischemic conditions.

1. Introduction

Understanding the behavior of cellular action potential
models is essential, as these models integrate biophysical
mechanisms, thereby offering significant explanatory and
predictive power. This predictive capability is particularly
useful in cardiac electrophysiology, as it allows the simu-
lation of various scenarios under different conditions.

To enhance the credibility of simulations, it is crucial to
assess the relevance of each parameter employed by car-
diac models. This can be accomplished through the appli-
cation of techniques such as uncertainty quantification and
sensitivity analysis [1]. However, as model complexity in-
creases, these tools require large datasets to yield stable
results, making the use of direct simulations or real data
computationally prohibitive.

Emulators emerge as a viable solution for generating the
large datasets required for these analyses, offering substan-
tial advantages in terms of computational cost and execu-
tion time compared to direct model simulations. Among
the main surrogate models used in the cardiac modeling

context, the following stand out: Polynomial Chaos Ex-
pansions (PCE), as explored by Del Corso et al. (2020) to
perform global sensitivity analysis and uncertainty quan-
tification in a monodomain model of cardiac electrophys-
iology [2]; Gaussian Processes (GP), applied by Coveney
et al. (2021) to reproduce restitution curves, thereby fa-
cilitating Bayesian calibration and sensitivity analysis of
clinical models from noisy data [3]; and finally, Neural
Networks (NN), as investigated by Pagani and Manzoni
(2021), which integrated this technique with reduced order
modeling to emulate complex simulations, facilitating un-
certainty quantification and sensitivity analysis of parame-
ters in electrophysiological models.

In this context, this study utilizes the model proposed by
ten Tusscher [4], a well-established and relatively simple
human action potential model, under disease condition [5],
to evaluate the performance of various surrogate models.

2. Methods

This study evaluates the ability of emulators to capture
action potential (AP) dynamics under disease conditions
and across varying cell physiologies. The models have
two core components based on parameterizations of the
ten Tusscher 2004 (TT) model [4], as defined in Table 1:
an ischemic model representing different degrees of aci-
dosis, hypoxia and hyperkalemia conditions, as defined
in [5]; and a cell diversity model that incorporates ionic
conductance variations to account for diverse AP wave-
forms within a population. The resulting AP morpholo-
gies are characterized by four key quantities of interest
(Qols): dV/dt ., (maximum upstroke velocity), APD50
and APD90 (AP durations at 50% and 90% repolarization),
and Vi..s: (resting potential). To minimize the impact of
transient effects, Qols are measured after 20 AP cycles,
with 1 second between stimulus.

We evaluate three types of regression models as emula-



tors to model the relation between parameters and AP fea-
tures: Gaussian Processes (GP), Neural Networks (NN),
and Polynomial Chaos Expansions (PCE). We consider
two degrees of complexity: Model A, a disease model that
includes only three ischemic parameters, ranging from 0
to 1 scaling the degree of acidosis, hypoxia and hyper-
kalemia; and Model B, that extends this base ischemic
model by adding scaling coefficients to base ten Tusscher
[4] conductance values to account for cell diversity within
a population, for a total of 12 parameters. The solution
space of both models is shown in Figure 1. Each model
is used to generate datasets to train the emulators, sam-
pling uniformly each of the parameters and running the
base TT model. Training set sizes range from 100 to 5,000
samples, and the validation set has 100,000 samples. Key
performance metrics included training/inference times and
memory usage, and accuracy, in the form of the Mean Ab-
solute Relative Error :
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for a dataset with N samples a QOI ). Models with it-
erative training (NN and GP) were allowed to train until
convergence (with tolerance = 1 x 1075 and only stopping
after 1000 iterations with no improvement).

Gaussian Process. Gaussian Processes (GPs) are non-
parametric models that define distributions over functions.
Given training data {Xin, Yirain }» the GP posterior mean
prediction for a new input x is:

y= WL(X) + k(x, Xtrain)K;ailn,lmin(y train — m(xtrain))' 2)

where m(x) is the mean function and k(x, x) is the kernel
function [6]. The matrix Kiuinmain represents the covari-
ance among training points, training usually involves solv-
ing it’s associated linear system via Cholesky decomposi-
tion. Thus GP training scales as O(N3), while inference
scales as O(N?), yielding the predictions of both mean
and variance. Three GP models are considered. G P,
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Figure 1. AP waveforms for Models A and B. (left) Model
A with all parameters varying from 0 to 1 (disease-free to
maximum disease). (center) Model B with conductance
coefficients ranging from 0.5 to 1.5, ischemic parameters
fixed at O or 1. (right) Model B with ischemic parameters
varying from 0 to 1, and conductances from 0 to 1.5.

Table 1. Model parameters mapped to ten Tusscher pa-
rameters values (Input). Ischemia model parameters range
from O to 1 corresponding to healthy and diseased con-
ditions, scaling linearly. Cell population model has con-
ductance parameters ranging from 0.5 to 1.5 and are co-
efficients that directly multiply TT parameters to capture
diverse AP waveforms.

Model Parameter | Input Base Value Diseased
Value
9INa 15.0 11.0
. Acid Jcal 0.175 0.131
Ischemia K; 138.0 125.0
Hypox ATP 5.40 4.05
Hyper Ko 5.60 10.0
Parameter | Input Base Value Range
gNaC INa gNa 0.5—-1.5
gcalc 9gcal 9gcal 0.5—1.5
9Kic 9K1 5.40 0.5—1.5
Cell Diversjtygk rc 9Kr 96.0 05— 1.5
model 9K sC JK s 245.0 05—-1.5
JtoC Jto 294.0 0.5—-1.5
gbCaC 9bCa 0.592 0.5—1.5
9IpCal IpCa 9IpCa 0.5—1.5
Iri IpK 0.0146 0.5—1.5

employing a constant mean function with an RBF ker-
nel. G Py, that incorporates a linear mean and a com-
posite RBF-Matérn (v = 2.5) kernel, and G Py, that uses
a constant mean combined with a composite RBF-Matérn
(v = 1.5)-linear kernel. GPs are implemented using Gpy-
torch [7], which provides a framework for efficient infer-
ence and training using GPUs, including conjugate gradi-
ent approximation instead of the decomposition when the
training set is larger than 2000 samples.

Neural Network Emulators. Neural Networks (NNs)
approximate functions via composite transformations [8]:

y=c(WE (cWED . ..o(WDx+ b)) 4 bT=1))) L pT)y,
3
where W) and b(®) are layer parameters. We explore:
N Ng (1 layer, 16 neurons), N N, (2 layers, 32 neurons
each), and N N, (4 layers, 64 neurons), using a SILU func-
tion for 0. Parameters are optimized by fitting the training
data using Adam (Ir=1e~*) and the Ly loss. The number
of parameters and thus training size mainly scales with net-
work size, requiring iterative updates through backpropa-
gation of a loss function. Inference scales only with model
size (the number of layers and neurons), consisting of se-
quential matrix-vector multiplication at each layer. Neu-
ral networks are trained and evaluated using performance-
focused custom PyTorch [9] code, leveraging GPUs.
Polynomial Chaos Expansion. Polynomial Chaos Ex-
pansion (PCE) represents outputs as weighted sums of or-
thogonal polynomials [10]:

y=> adi(x), )
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Figure 2. Comparison of MARE (average of all Qols) for
emulators of the models A (top) and B (bottom).The plots
illustrate variation for surrogates trained with more or less
data (0.1K to 5K samples) with the black lines.

where ®;(x) are basis polynomials of degree P, and ¢; are
regression coefficients. Higher-degree expansions capture
more variance but increase complexity. We use Legendre
polynomials of degrees 2, 3, and 5. Number of model pa-
rameters and thus training cost scales polynomially with
input dimensionality, making it ideal for low-dimensional
problems but impractical for high-dimensional due to an
exponential growth in basis functions. Inference scales
with the number of basis terms, requiring polynomial eval-
uations and summations. Training and inference are done
using ChaosPy [11] on a single CPU core.

3. Results

Results indicate that Model B was consistently more
challenging to emulate than Model A. Model B surro-
gates exhibited MARE values are approximately ten times
greater than for Model A, both when considering the av-
erage of Qols (Figure 2), and when Qols were considered
individually (Figure 3). Notably, surrogates of Model B
benefited significantly more from increasing the number
of training samples, suggesting that the increase in model
complexity, due to higher dimensionality, can be mitigated
by larger training datasets (see red lines of Figure 2). How-
ever, this improvement was only observed in models with
relatively higher expressive capacity, such as higher-order
PCEs and large NNs. Interestingly, this effect is most pro-
nounced in PCEs. For Model B, the PCE exhibits signifi-
cantly greater expressive power than for Model A, enabling
it to fit a larger amount of training data. This is because in
PCE, the number of surrogate parameters, a good proxy
for expressive capabilities, scales polynomially with the
problem’s dimensionality. In contrast, due to their reliance
on the covariance matrix, GP benefit from an increase in
training data across both models.
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Figure 3. MARE for APD90 and Vrest of models A (left)
and B (right), showing results by training size and the im-
pact of increasing set size (dashed line indicates the slope).

The performance of PCEs and NNs was similar, but as
Qol or model complexity increases, N+he most accurate
emulator for Model A, while N N, was the best for Model
B. Notably, while PCs and PC} yielded similar results to
the neural networks, they required 5000 training samples
for optimal results, while increasing the number of samples
further than 500 for the networks had little effect. This
suggests that even if model expressiveness is comparable
for models of about the same size magnitude (PC's has
around 6000 parameters and N N 13000), NNs are better
at interpolating data from scarce training sets.

Conversely, GPs exhibited the worst performance in
both models, despite showing a noticeable improvement
in accuracy as the number of training samples increased.
This trend was particularly promising in Model A, where
the best GPs matched other emulators, even though requir-
ing more training samples. GPs, however, proved to be less
effective than the other surrogates as complexity increased.

Key trade-offs to emulator accuracy are the time to train
and the inference speed of the surrogates. During training,
PCEs were the most cost-effective, training in milliseconds
with minimal memory usage and using only a single cpu
core, while using a GPU, NNs required a few seconds and
GPs anywhere from tens to up to hundreds of seconds de-
pending on training set size. Figure 4 shows the balance
between time for each trained surrogate to process 100,000
samples and their accuracy. Inference time was shortest
for NNs due to fully parallelized computations on a RTX
4070 GPU. While GPs also benefited from GPU accelera-
tion, inference cost is higher but also yields the variance in
the prediction. For PCEs, while the use o single core had
comparatively less impact during training, that is in large
part serial, serial inference (around 4GHz) is much slower
than the other surrogates, this however could be mitigated
by using a multi-core approach.
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Figure 4.  Cost-effectiveness comparison of surrogate
models for Model A (MARE vs. inference time for
100,000 samples). Running 100,000 TT models in parallel
on the same GPU takes 2450 s.

4. Conclusions

In this study, we evaluated the effectiveness of three sur-
rogate modeling techniques—Polynomial Chaos Expan-
sions, Neural Networks and Gaussian Processes—for emu-
lating cardiac electrophysiological ischemia models under
diverse cell conditions. Our results show a direct relation-
ship between model complexity, emulator accuracy and
training sample requirements. Furthermore, while PCE
models were enough to yield good accuracy results, their
lack of GPU support makes them very slow, although re-
sults could scale much better with multi-core support, even
if only using cpus. In that sense, NN models outperform
all others, achieving more than a million samples per sec-
ond, while maintaining accuracy comparable to the best-
performing models. Although GPs also utilize GPU accel-
eration, O(IN?) inference scaling makes it much slower,
this however is balanced by it also inherently yielding the
uncertainty associated with the predictions, which would
require Monte Carlo sampling of the other surrogates.

This study highlights the efficiency of emulators in mod-
eling AP dynamics. Once trained, surrogate inference
achieved up to a million-fold speedup over the ten Tuss-
cher model, with relative errors below 1%.While the initial
cost of generating sufficient training data and optimization
is equivalent to approximately 2000 model runs, this in-
vestment is increasingly offset as sample size requirements
grow, making emulators especially valuable for large-scale
tasks like parameter optimization and sensitivity analysis.
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