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Abstract

Automated cardiovascular disease classification is cru-
cial to enabling real-time and continuous monitoring us-
ing wearable electrocardiogram (ECG) devices. How-
ever, due to the limited number of pathological class sam-
ples and difficulty in separating some hard-to-discriminate
ECG classes (such as normal sinus rhythm (N) and pre-
mature supraventricular contraction (S)) due to their mor-
phological similarity, existing deep learning models fre-
quently fail to ensure sufficient inter-class separation in
the latent space, limiting their discriminative power. The
proposed deep metric learning framework with dynamic
margin triplet loss (DynaECG-Net) extracts feature em-
beddings that maximize latent space separability between
N, S, and premature ventricular contraction (V) heart-
beats. Disease-specific experiments conducted on MIT-
BIH ECG Arrhythmia dataset for 3-class classification
with 50% data used for training, yield overall: accu-
racy 98.97%, sensitivity (Sen) 97.76%, and, F1-score (F1)
96.82% and classwise: N (Sen=99.47%, F1=99.35%),
S (Sen=95.23%, F1=93.36%) and V (Sen=99.44%,
F1=98.19%) achieving better performance than the state-
of-the-art in low inter-class separability and data-scarce
conditions. Additionally, a t-SNE visualization demon-
strated well-separated embedding clusters for each class.

1. Introduction

Arrhythmia, a cardiovascular disorder characterized by
irregular heart rhythms, contributes significantly to the
global burden of cardiovascular diseases (CVDs), which
account for 32% of all deaths worldwide [1]. Early and
accurate arrhythmia detection is essential for timely treat-
ment, particularly with the rise of wearable single-lead
ECG devices like KardiaMobile and EMAY that enable
real-time, continuous monitoring. However, automated
classification remains challenging due to the limited num-
ber of pathological samples and the morphological similar-
ity between hard-to-separate classes such as normal sinus
rhythm (N) and supraventricular ectopic beats (S).

Deep learning (DL) has emerged as a powerful tool
to automate arrhythmia classification by learning relevant
features directly from ECG data. DL models can be
broadly categorized as pure models (e.g., CNNs, trans-
formers) and hybrid models (e.g., CNN-LSTM, CNN-
transformer). Convolutional neural networks (CNNs), due
to their ability to learn spatial hierarchies of features, have
become a foundational architecture for ECG analysis. Ki-
ranyaz et al. [2] utilized 1D CNNs for patient-specific ar-
rhythmia classification with up to 99% accuracy. In other
studies, CNNs have been extended with recurrent layers
such as LSTMs and GRUs to capture temporal depen-
dencies [3]. Recent works have also integrated attention
mechanisms to improve feature selection and focus on rel-
evant heartbeat segments. Models like spatial-temporal at-
tention networks and dual-level attention LSTMs demon-
strated improvements in macro F1 score and interpretabil-
ity, though many still rely on multi-lead ECG inputs or
ignore class imbalance [4, 5]. Transformer-based models,
initially developed for natural language processing, are in-
creasingly applied to ECG due to their ability to model
long-term dependencies in parallel [6]. Hybrid CNN-
transformer architectures have shown promising perfor-
mance, yet often involve complex, multi-lead input data
unsuitable for practical deployment [7]. Most existing
deep learning models struggle with these constraints, of-
ten failing to ensure adequate inter-class separation in the
latent space and requiring post-processing to reach accept-
able performance [37], [38]. This highlights the need
for accurate, lightweight, and interpretable models de-
signed specifically for multi-class arrhythmia classifica-
tion from single-lead ECG signals in data-scarce and low-
separability conditions [8].

To address these challenges, we propose DynaECG-
Net, a novel hybrid architecture that integrates a convo-
lutional neural network (CNN) for local feature extrac-
tion with a channel attention mechanism to refine salient
features. The model processes 253-sample heartbeat seg-
ments from single-lead ECG signals and performs three-
class arrhythmia classification (N, S, and V). To enhance
inter-class separability, DynaECG-Net employs a dynamic
margin triplet loss, optimizing latent space embeddings for



better discrimination, especially between morphologically
similar classes like N and S. The results highlight the po-
tential of DynaECG-Net for accurate, real-time arrhythmia
detection using wearable devices in both clinical and home
settings.

2. Materials and Methods

2.1. Data

Data consisted of the Massachusetts Institute of
Technology-Beth Israel Hospital (MITBIH) arrhythmia
database [9, 10]. It includes 48 two-channel ambulatory
ECG records, each approximately 30 minutes long and
digitized at a sampling rate of 360 Hz and gain of 200
analog-to-digital converter units per millivolt (adu/mV).
The recordings were acquired from 47 subjects, 25 men
aged 32—89 years and 22 women aged 23—89 years
(record number 47 and 48 came from the same subject).
Each record features simultaneous recordings from two
leads, MLII and V5. This work tests the classification of
three heartbeat classes, N, S, and V defined according to
the AAMI/ANSI standard [11]. MITBIH provides annota-
tions of associated with R-peak position of each heartbeat
used for classification labels. Currently, we are using all
the data available from the MITBIH database. No data ex-
clusion based on outlier removal or feature reduction meth-
ods have been made.

2.2. Dynamic Margin Metric Learning

Dynamic triplet loss processes a set of three examples,
referred to as a triplet, at a time to learn the desired em-
bedding space where all possible triplets satisfy the triplet
constraint. Here, it is utilized to train a hybrid neural net-
work that combines CNN and BiLSTM with a layer of
self-attention known as triplet at a time to learn the desired
embedding representation as shown in Figure 1. The sep-
aration between N and S beats is especially difficult as the
morphological and temporal similarities exist in both the
heartbeats. We adjust the dynamic margin here to get the
best separation between N and S beats especially. The rep-
resentative embedding vector is then optimized for max-
imum separation between the arrhythmic classes that are
already hard to separate. The margin is incrementally in-
creased according to the feedback gradient. The next loop
runs for a different margin. If the triplet loss for the current
loop is lesser than the previous, the current setting is said
to be optimized, otherwise the previous setting is carried as
the optimum value. Similarly, the simulation goes on for
30 iterations to find the final perfect classification result for
the currently simulated data.

Heartbeat input [12], defined as x ∈ R1×L, where
L = 253, is fed to the embedding network. The CNN

layers extract local morphological patterns via two convo-
lutional blocks with ReLU activation, batch normalization,
and max-pooling, resulting in a downsampled sequence
xc ∈ RC×T . The output is permuted to a temporal format
xc ∈ RT×C and fed into a bidirectional LSTM (Bi-LSTM)
with hidden size h, producing a temporal embedding se-
quence H = [h1, h2, . . . , hT ] ∈ RT×2h. We then apply an
attention mechanism to compute a context vector c ∈ R2h,
defined as:

αt =
exp(w⊤ht)∑T
j=1 exp(w

⊤hj)
, c =

T∑
t=1

αtht (1)

where w ∈ R2h is a learnable weight vector. This con-
text vector is passed through a fully connected two-layer
network and normalized to unit length, producing the final
embedding z ∈ R, where ∥z∥2 = 1.

To structure the embedding space so that similar heart-
beats lie closer to dissimilar ones, we adopt a triplet loss
with a dynamic margin m. A triplet consists of an anchor
za, a positive zp, and a negative zn, where za, zp belong
to the same class, and zn belongs to a different one. The
loss is formulated as follows:

Ltriplet = max
{
∥za − zp∥22 − ∥za − zn∥22 +m, 0

}
(2)

In this work, we implement an adaptive strategy in
which the triplet loss margin m is a dynamic variable that
evolves during training. Initially set to a minimum value
mmin = 0.2, it guides the model to learn an embedding
space where the examples of each class are separated by
at least this margin. As training progresses, the number of
semi-hard triplets mined decreases. If this number falls be-
low a predefined threshold for three consecutive iterations,
m increases by 0.05. This cycle continues until it reaches a
maximum value mmax = 0.8. The dynamic margin facil-
itates mining additional informative triplets and enhances
inter-class separability. The minimum and maximum val-
ues of a were determined empirically.

2.3. Classification using MLP

Once the embedding network is trained, we freeze its
weights and extract embeddings z ∈ Rd for all samples.
These are fed into a lightweight multi-layer perceptron
(MLP) for classification:

ŷ = softmax(W2 ·ReLU(W1z + b1) + b2) (3)

where W1 ∈ Rh′×d, W2 ∈ RK×h′
, and K is the number

of heartbeat classes. The MLP is trained using the cross-
entropy loss:

LCE = −
K∑
i=1

yi log ŷi (4)



Figure 1. Overall diagram of the proposed model (left panel), and CNN-BiLSTM feature extraction and embedding
optimization network (right panel).

where yi is the true label (one-hot encoded) and ŷi is the
predicted probability.

2.4. Evaluation criteria

The performance of the model is evaluated and reported
using both classwise and overall (macro-averaged) metrics
of accuracy (Acc), sensitivity (Sen), precision (Pre) and
F1-score (F1) using Equations 5, 6, 7, and 8, where K = 3
is the number of classes.

Acc =

∑K
k=1 TP k

N
(5)

Senk =
TP k

TP k + FNk
, Senmac =

1

K

K∑
k=1

Senk (6)

Prek =
TP k

TP k + FP k
, P remac =

1

K

K∑
k=1

Prek (7)

F1k =
2 · Prek · Senk

Prek + Senk
, F1mac =

1

K

K∑
k=1

F1k (8)

3. Results and Discussion

The effectiveness of this approach is reflected in the
classification metrics. An overall accuracy of 98.97%, sen-
sitivity of 97.76%, and F1-score of 96.82% indicate the
model’s strong ability to generalize, even when trained on
only 50% of the available data. Notably, the classwise per-
formance underscores the model’s strength in distinguish-
ing between morphologically similar classes. For instance,
the sensitivity of 95.23% and F1-score of 93.36% for the
class S is particularly impressive given its visual resem-
blance to class N. These results highlight that the dynamic
margin contributes not only to better separation between

majority and minority classes but also enhances the de-
cision boundary between classes with overlapping mor-
phologies. The t-SNE visualizations as shown in Figure 2
further validate this behavior by revealing well-separated
clusters in the learned embedding space. Unlike conven-
tional classification loss functions that do not explicitly en-
force class separability, the dynamic triplet loss ensures
that embeddings of the same class are pulled together,
while embeddings of different classes are pushed apart
based on the relative difficulty of each triplet. This dy-
namic adjustment avoids the pitfalls of a fixed margin ap-
proach, which may overfit or underfit depending on intra-
class variability.

Table 1. Classification results for N, S and V classes on
MITBIH dataset.

Class Sen Pre F1
N 99.00 100.00 99.00
S 95.00 91.00 93.00
V 99.00 98.00 98.00
Overall 97.66 96.33 96.66

Comparative analysis with existing methods also re-
veals the superiority of DynaECG-Net. Prior works have
reported challenges in distinguishing between N and S
classes, often leading to low sensitivity for the S class.
The proposed method outperforms previous state-of-the-
art models in this regard, particularly under data-scarce
conditions, thereby demonstrating better generalizability
and robustness. The high classification scores for both the
majority (N) and minority (S, V) classes indicate that the
model avoids the common issue of class imbalance bias.
Another notable strength of this framework is its suitabil-
ity for wearable ECG monitoring applications. The com-
pact and discriminative nature of the learned embeddings
suggests that they could be efficiently transferred to low-
power edge devices for real-time classification, facilitating
early detection of arrhythmic events in continuous mon-
itoring scenarios. From a computational standpoint, al-



though DynaECG-Net remains relatively lightweight com-
pared to deeper networks, the triplet loss formulation re-
quires careful triplet selection during training, which can
increase training time and complexity. This has meaning-
ful implications for personalized and remote healthcare.

Figure 2. t-SNE visualization of embedding representa-
tion of training data in latent space.

While DynaECG-Net shows strong performance in clas-
sifying ECG beats under data-limited and low separability
conditions, its current evaluation is limited to a disease-
specific intra-patient setting and a focused three-class (N,
S, V) task, which, although effective for analyzing hard-
to-distinguish classes like N and S, does not represent the
full range of arrhythmic conditions. Future work should
explore domain adaptation techniques to enhance gener-
alizability across cross-database scenarios by enabling the
model to learn domain-invariant features, further strength-
ening the applicability of this model in clinical settings.

4. Conclusion

In conclusion, DynaECG-Net offers a robust and scal-
able solution for automated ECG classification, achieving
high performance with limited data while ensuring inter-
pretability and class separability.
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