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Abstract 

Non-contact mapping (NCM) offers unique real-time, 

global atrial activation sensing but is limited by reduced 

accuracy >4 mm from the catheter. Alternatives, such as 

basket catheters, face challenges of poor wall contact and 
resolution. Rotor/re-entry mapping has driven interest in 

sequential approaches (e.g., PentaRay, HD-Grid), though 

these assume stable signals, which is problematic in 

atrial fibrillation (AF). Our studies show dominant 

frequency (DF) requires ≥84 s for stability, whereas 

phase singularity (PS) density stabilises within 18 s. 

Using DF-guided ablation with a near-real-time 

interface, AF terminated in 4/10 cases before pulmonary 

vein isolation, with recurrence linked more to stability 

than absolute DF. Machine learning using recurrence 

quantification and wavelet clustering achieved up to 70% 

accuracy in predicting ablation response. Despite 
discontinuation of EnSite arrays, simultaneous 

recordings with PentaRay highlight the potential of 

integrating contact and non-contact mapping with 

machine learning to enhance AF driver identification. 

 

1. Introduction 

Atrial fibrillation (AF)—rapid, irregular atrial 

activation—quintuples stroke risk and doubles heart-

failure risk. In the UK, >1 million people are affected; 

annual NHS costs are ~£1.435 bn, projected to ~£2.351 

bn by 2030. Much of this burden reflects repeat 

admissions after catheter ablation (CA): with current 

technology, only ~50% of persistent AF (persAF) patients 

are arrhythmia-free 12 months after first CA. AF requires 

a trigger and a sustaining substrate; pulmonary-vein 

isolation (PVI) treats paroxysmal AF, but poor persAF 

outcomes imply extra-PV drivers [1, 2]. Atrial regions 

with complex fractionated atrial electrograms (CFAEs) 
were reported to represent relevant AF substrate and 

target sites for AF ablation [3], but the STAR-AF 2 trial 

showed that additional ablation of a sequential marker 

failed to improve the outcome, compared to PVI alone 

[4]. Ablation targeting focal impulse and rotor 

modulation (FIRM) initially showed high termination 

rate, but other groups failed to reproduce these results. 

These techniques were implemented in commercial 

systems considering single markers, but this has proven 
insufficient [4, 5] with resultant disappointing clinical 

outcome in terms of AF recurrence (CONFIRM). 

Multiple mechanisms may co-exist during persAF [6, 7]. 

Single processing technique is unlikely to capture all 

drivers. Precise target identification therefore demands 

detailed tissue characterisation and patient-specific 

strategies, with modern data-driven methods increasingly 

outperforming rule-based approaches. 

 

2. USURP-AF Database and Outcomes - DF 

ablation in persAF 

Ten persAF patients undergoing first time LA catheter 

ablation were enrolled. Bi-atrial noncontact multi-
electrode arrays (EnSite, St. Jude Medical, St. Paul, MN, 

USA) were inserted in LA. ECG and Virtual Electrogram 

(VEGM) data were collected simultaneously for 5 

minutes before ablation. High DF regions in the LA were 

identified as described before[8, 9] and 30s (from 5 min 

recording) of unipolar LA VEGMs (2048-

channels[nodes]) were exported to our Matlab 

platform[10, 11] to guide ablation targeting. Cycle 

lengths before and after ablating each atrial DF site were 

recorded. We consider AF cycle length (AFCL) 

increase>10ms and AF termination as positive ablation 
result. There were no adverse events in all ten patients. A 

total of 51 atrial locations [3,206nodes] were ablated: 16 

with AFCL increase [1,182nodes], 4 terminated AF 

[308nodes], 7 AFCL decrease [381nodes] and 24 no 

AFCL change [1,335nodes]. Three patients had ablation 



terminations to atrial flutter or tachycardia before PVI, 

one ablation to LA silence and subsequent spontaneous 

SR pre-PVI and one conversion to SR with flecainide 

alone post-PVI.  

 

 

Figure 1. The workflow of using the USURP-GUI 

platform to guide catheter ablation 

 

3. Feature based approaches  

3.1. What we learnt from DF guided 

ablation 

Bar plots show mean ± standard deviation (SD) for 

each feature by class; pairwise p-values are reported in 

Table 1. Mean DF (Hz) for the four classes were 4.94 ± 
0.23, 5.38 ± 0.67, 5.48 ± 0.71, and 5.33 ± 0.69 (overall 

p<0.0001p < 0.0001p<0.0001). Temporal DF SDs were 

0.39 ± 0.11, 0.69 ± 0.28, 0.64 ± 0.23, and 0.75 ± 0.29 

(overall p<0.0001p < 0.0001p<0.0001). Mean OIs were 

0.39 ± 0.30, 0.35 ± 0.06, 0.35 ± 0.05, and 0.32 ± 0.05 

(overall p<0.0001p < 0.0001p<0.0001). Temporal OI SDs 

were 0.11 ± 0.01, 0.10 ± 0.02, 0.10 ± 0.02, and 0.09 ± 

0.01 (overall p<0.0001p < 0.0001p<0.0001). Notably, 

most features in the AF-termination class differed 

significantly from the other classes, indicating phenotypic 

distinctiveness of termination sites; increasing the number 

of termination cases may further improve classifier 

performance on future data. 
 

 
Figure 2. The bar graphs of the 4 features for each class. 

 

Across ablation outcomes, AF termination and  AFCL 

prolongation were not associated with the highest 

dominant frequency (DF) per se, but consistently required 

relatively high organization index (OI). Subsequent 

temporal analyses showed that periods with temporally 

stable DF tended to co-occur with high OI. Taken 

together, sites exhibiting moderately elevated DF together 

with high OI appear enriched for termination 

mechanisms.  
 

3.2. DF and Recurrent DF 

We subsequently observed that recurrent DF (rDF)—

i.e., the repeated re-emergence of similar DF values over 

time—is associated with higher organisation index (OI) 

and moderately elevated (rather than maximal) DF. This 
composite phenotype (rDF + high OI + moderate DF) 

appears more closely linked to atrial regions relevant for 

Figure 3. End-to-end pipeline for data-driven AF target identification. 

 



AF modification than instantaneous DF alone. 

Using global mapping during persAF, we showed that 

DF lacks spatiotemporal stability[12], suggesting 

limitations in previous studies using sequential DF 

mapping[13].  Cyclical behaviours of high DF (HDF) 
reappearance in the LA[8], and  recurrent behaviour of 

DF in longer EGM duration (5 mins)[14] have been 

demonstrated by our group, which suggest that electrical 

activity of AF is not entirely random. Preliminary data 

suggest that recurrent HDF pattern regions were observed 

to have higher organization [14], which was also 

supported in recent work investigating temporally stable 

DF[15]. There is, therefore, a need to investigate whether 

these recurrent, more organised atrial regions are more 

correlated with the underlying AF drivers as potential 

targets for ablation.  

However, machine-learning models built on DF and OI 
(including area-averaged OI, aOI) alone did not 

generalize well to our unpublished hold-out cohort, 

suggesting additional features are required for robust 

prediction. 

 

3.3. Rotor and Rotor duration 

   Rotors (spiral waves) have been observed during atrial 

arrhythmia and are implicated as localized drivers of 

fibrillation. Phase mapping is widely used to identify 

rotor/phase-singularity (PS) sites, yet results can conflict 

(e.g., FIRM) and remain sensitive to algorithmic choices 

(search radius, phase-gradient thresholds) and pre-

processing filters. In head-to-head testing of three 

automated rotor-tracking pipelines, we found PS 

detection to be method-dependent [16], and established 

that robust PS-density (PSD) estimation requires ≥18 s of 

data. Notably, DF and PS sites frequently co-localize [9]. 

Going forward, we will incorporate rotor-derived features 
(e.g., PSD, rotor dwell/recurrence) alongside organization 

metrics to improve targeting of AF-modifying regions. 

 

4. Machine learning and Data driven 

approaches 

    After domain-driven features (e.g., DF, aOI) failed to 

generalize for AF substrate targeting, we pivoted to a 

data-driven strategy with minimal prior assumptions. 

Rather than prespecifying electrophysiological markers, 

we let the recordings themselves determine salient 

spatiotemporal patterns, including recurrent/stable 

behaviours, and assess their association with AF 

modification and termination. Our aim, consistent with 
AI-for-Science, is to extract reproducible, mechanistically 

plausible signals from the data. 

 

4.1. Time Series features  

We extracted 390 features per electrogram (EGM) across 

three domains—spectral, temporal, and statistical—using 

the TSFEL Python library. Records were labeled as (i) 

positive if ablation resulted in AF termination or AF-

cycle-length (AFCL) prolongation ≥10 ms, and (ii) 
negative/neutral if AFCL change was <10 ms or absent. 

Among all features, the FFT mean coefficient at 10 Hz 

was most discriminative; a univariate model using this 

feature achieved 71.74% accuracy (10-fold cross-

validation). We identified spectral power at ~10 Hz (near 

the upper end of the atrial DF band) as a strong univariate 

marker for AF termination and AFCL prolongation[17]. 

4.2. Recurrence quantification analysis 

features 

We evaluated supervised learning using non-linear RQA 

descriptors from short electrogram segments (~3 s) to 

predict acute ablation outcome. Under an inter-patient 

split (leave-one-patient-out cross-validation), the RQA 

feature set achieved 74% accuracy. Feature-importance 
analysis consistently highlighted measures as most 

informative—determinism (DET) and length of the 

longest diagonal line. 

4.3. Wavelet scattering coefficient features  

Wavelet-scattering features, reduced via principal 

component analysis and fed to a supervised classifier, 
predicted ablation outcome from 18-s segments with 79% 

accuracy. This compact pipeline is a promising direction 

for outcome prediction. 

 

4.4. Deep learning approaches  

We evaluated image-based deep learning using 

ResNet-50 (spectrograms and recurrence plots), an 
autoencoder, and transfer learning from ImageNet. Under 

inter-patient splits (leave-one-patient-out, 10-fold CV), 

transfer learning with ResNet-50 on spectrograms 

achieved 62% accuracy; an autoencoder followed by a 

decision-tree classifier achieved 63%. All results use 

patient-wise partitions to avoid leakage and provide 

reproducible baselines. 

 

5. Conclusion 

Simultaneous/global mapping remains valuable for AF 

driver identification, despite known distance-related 

limitations, because it uniquely captures chamber-wide 

dynamics in real time.  Across analyses, DF alone was 

insufficient: termination/AFCL prolongation clustered at 

sites showing moderate DF with high organisation and 

recurrence. Feature-based pipelines outperformed deep 

nets: TSFEL features identified a 10 Hz spectral marker 



(71.74%), RQA features from ~3 s segments reached 

74%. With a small dataset, feature-based pipelines 

outperform deep learning—e.g., wavelet-scattering+PCA 

achieved 79% vs ResNet-50 transfer/autoencoder 62–

63% (patient-wise CV).  These results support a data-
driven, hypothesis-light strategy that integrates 

recurrence/stability, organisation, and rotor-derived 

features, with rigorous leakage controls. Future work will 

expand cohorts, perform multi-centre external validation, 

and translate the pipeline to contact-mapping platforms 

using our paired non-contact/contact recordings to bridge 

modalities and enable prospective testing. 
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