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Abstract

Chagas disease, caused by Trypanosoma cruzi, poses
a major global public health challenge, particularly in
endemic regions. With an estimated 6.5 million affected
individuals and nearly 10,000 deaths annually, effective
screening and diagnostic strategies are critical. This study
leverages advances in machine learning and ECG data
analysis to improve patient prioritization for confirma-
tory testing. The proposed HEART system employs a
spectrogram-based convolutional neural network with a
novel lead-aware attention mechanism, achieving promis-
ing results in identifying at-risk patients. Our model
achieved a Challenge Score of 30.3 % during the offical
phase, demonstrating its effectiveness in ranking Chagas-
positive patients among the top cases. These findings high-
light the potential of algorithmic approaches to enhance
diagnostic accuracy and reduce the morbidity associated
with Chagas disease.

1. Introduction

Chagas disease, a tropical parasitic infection caused by
Trypanosoma cruzi, represents a significant public health
concern, particularly in endemic regions. The parasite
is primarily transmitted by triatomine insects, commonly
known as “kissing bugs,” and is estimated to infect about
6.5 million people worldwide, causing nearly 10, 000
deaths annually [1]. Importantly, the disease is not con-
fined to endemic countries; it also affects migrants living
in high-income nations [2]. Despite its severity, no vaccine
is currently available, underscoring the need for improved
screening and diagnostic measures.

The disease progresses through distinct phases, be-
ginning with an acute stage—often occurring in child-
hood—that is usually mild or asymptomatic. At this stage,
treatment with antiparasitic medication can effectively halt

disease progression [3, 4]. However, untreated individu-
als may develop chronic disease, which can lead to severe
complications such as Chagas cardiomyopathy. This con-
dition is characterized by heart failure, arrhythmias, and
an elevated risk of thromboembolism [5]. While diagno-
sis generally relies on serological testing, access to such
resources remains limited in many regions. Notably, Cha-
gas cardiomyopathy frequently manifests in electrocardio-
grams (ECGs), providing a valuable signal for identifying
at-risk patients and guiding subsequent treatment decisions
[6].

Against this backdrop, the George B. Moody PhysioNet
Challenge 2025 offers a unique opportunity to advance
screening methods for Chagas disease. The competition
encourages teams to develop innovative algorithmic ap-
proaches that use ECG data to prioritize patients for confir-
matory testing. By harnessing recent advances in artificial
intelligence and machine learning, this initiative aims to
improve diagnostic capabilities and ultimately reduce the
morbidity and mortality associated with Chagas disease.

2. Methods

2.1. Data Introduction

The Challenge used the CODE-15% dataset [7], the
SaMi-Trop dataset [8], the PTB-XL dataset [9], and mul-
tiple private datasets from Chagas-endemic areas. The
CODE-15% dataset contains over 300, 000 12-lead ECG
recordings collected in Brazil between 2010 and 2016,
with self-reported binary Chagas labels. The SaMi-Trop
dataset includes 1, 631 validated Chagas-positive ECGs
collected in Brazil between 2011 and 2012. The PTB-XL
dataset provides 21,799 ECGs from non-Chagas patients in
Europe between 1989 and 1996. All datasets differ in col-
lection and validation procedures but together represent re-
alistic clinical data. The training set combines CODE-15%



with weak labels and SaMi-Trop and PTB-XL with strong
labels, while validation and test sets consist of strongly la-
beled data, reflecting the prevalence rates in endemic coun-
tries.

2.2. Data Preprocessing

Since the ECG recordings varied in sampling frequency
and duration, we transform all signals to a fix samplerate of
400 Hz. The length is standardized to a length of 10 sec-
onds using truncation or padding on both ends, resulting
in 4, 000 samples per lead. Each of the 12 leads was nor-
malized using per-lead Z-score normalization, with noise
injection applied to flat signals to avoid numerical insta-
bility. From the preprocessed signals, spectrogram repre-
sentations were extracted, primarily with the Short-Time
Fourier Transform (STFT, window size of 256 samples,
hop length of 48, Hann window), while Mel-frequency
cepstral coefficients (MFCC) and Stockwell transforms
were also evaluated as alternatives. This ensured a con-
sistent and physiologically relevant time–frequency repre-
sentation of the ECG data, as illustrated in Fig. 1.

Figure 1. STFT features from four ECG leads, showing
time (x-axis), coefficients (y-axis), and feature intensity
(color), used for Chagas detection.

2.3. Data Augmentation

To mitigate overfitting and enhance model generaliza-
tion, spectrogram-based augmentation techniques were ap-

plied. Specifically, frequency masking (up to 25 frequency
bins with probability 0.4) and time masking (up to 30
frames with probability 0.4) were performed on the spec-
trograms during training. These augmentations simulated
variability in signal acquisition and reduced dependency
on narrow spectral features. In contrast, raw-signal aug-
mentations such as time stretching, amplitude scaling, or
Gaussian noise injection were disabled to preserve data
consistency with the caching strategy.

2.4. Model Structure

The proposed architecture Fig. 2 is a spectrogram-based
convolutional neural network enhanced with a lead-aware
attention mechanism. Each ECG lead is first processed
independently through a dedicated feature extractor con-
sisting of three convolutional blocks. These blocks com-
bine convolutional layers with batch normalization, SiLU
activations, and max-pooling operations, followed by an
adaptive average pooling layer. This design captures local
time–frequency characteristics of the spectrogram while
progressively reducing dimensionality.

The resulting per-lead feature maps are then passed to
a lead attention module, which assigns an adaptive weight
to each lead through a linear transformation and sigmoid
activation. This mechanism emphasizes clinically relevant
leads and down-weights noisy or less informative signals,
improving both robustness and interpretability.

The weighted features from all leads are concatenated
and fed into a fully connected classification head. This
module consists of dense layers with batch normalization,
SiLU activations, and dropout regularization, ensuring ef-
fective hierarchical feature learning and reducing overfit-
ting. The final output layer provides a binary prediction
indicating the presence or absence of Chagas disease.

Compared to conventional CNNs, the incorporation of
lead-aware attention enables the model to handle miss-
ing or corrupted leads more effectively while highlighting
leads strongly associated with Chagas-specific ECG abnor-
malities.

2.5. Training Details

The proposed model was trained using the AdamW opti-
mizer [10] with an initial learning rate of 0.003 and no ad-
ditional L1/L2 weight regularization. To stabilize conver-
gence, a One-Cycle learning rate scheduler was employed,
with a warm-up fraction of 0.3 and a minimum learning
rate of 1 × 10−6. The scheduler dynamically adjusted the
learning rate to improve generalization and avoid prema-
ture convergence.

For loss optimization, we adopted a composite loss
function combining Focal Loss (γ = 2.5) weighted at 0.8
with a Top-k True Positive Rate (TPR) objective. This de-



Figure 2. Architecture of the ECG-Spectrogram Classifier
with convolutional feature extraction, lead attention, and
dense layers for Chagas detection.

sign directly aligns the training process with the Challenge
evaluation metric, while also addressing the strong class
imbalance inherent in Chagas datasets. A decision thresh-
old of 0.5 was applied for binary classification during in-
ference.

The model was trained over 20 epochs with a batch size
of 256, utilizing 80 % of the available data for training
and 20 % for validation. All three datasets were used to
develop a robust model. A stratified split strategy was
employed to preserve the natural distribution of Chagas-
positive cases.

To improve signal quality, ECG inputs were prepro-
cessed with a Butterworth bandpass filter (0.5–45 Hz, or-
der 2) and a notch filter at 50/60 Hz to suppress powerline
interference. Gradient clipping at 0.7 was applied to pre-
vent instability from exploding gradients.

2.6. Evaluation Metric

The primary evaluation metric for the Chagas Challenge
is the Challenge Score, which assesses algorithms’ ability
to prioritize patients for serological confirmation based on
ECG data. In regions with limited testing capacity, this
metric reflects the clinical utility of computational models
by measuring their effectiveness in identifying high-risk
individuals.

The Challenge Score is defined as the proportion of con-
firmed Chagas-positive patients ranked within the top 5 %
of the patient cohort, emphasizing early and accurate de-
tection to allocate limited tests to the most probable posi-
tive cases. Models are evaluated on a hidden test set, with
the highest score determining the Challenge winner.

Each algorithm assigns a probability of Chagas disease
to every ECG record, and patients are ranked accordingly.
The score is computed as the fraction of true positives in
the top-ranked subset relative to the total number of posi-
tives. Ties are resolved randomly, and the expected score
value is reported. This evaluation scheme optimizes al-
gorithms for both classification accuracy and prioritization
efficiency, essential for real-world clinical deployment in
resource-constrained settings.

3. Results and Discussion

In the PhysioNet Challenge for Chagas disease detec-
tion, the proposed model achieved a Challenge Score of
0.303. This score represents a central indicator of the al-
gorithm’s ability to identify patients at high risk of Chagas
disease based on ECG analysis. Specifically, the model
succeeded in ranking a substantial fraction of Chagas-
positive patients within the top 5 % of the cohort, which
is highly relevant in regions with limited testing capacity,
as it enables more efficient allocation of scarce diagnostic
resources.



The achieved score demonstrates that the model can
contribute to earlier diagnosis and timely treatment, po-
tentially reducing morbidity and mortality among affected
populations. The incorporation of a lead-aware attention
mechanism proved particularly valuable: by adaptively
weighting ECG leads according to their diagnostic rele-
vance, the model exhibited robustness against missing or
corrupted leads, thereby enhancing both reliability and in-
terpretability.

Despite these promising results, the obtained score of
0.303 also indicates room for improvement. Misclassi-
fications and performance variability highlight the need
for further refinements in data handling and model opti-
mization. Future work should investigate advanced data
augmentation strategies, alternative attention mechanisms,
and ensemble modeling approaches to increase predic-
tive performance. In addition, expanding the dataset with
more diverse patient cohorts could improve generalization
across different populations and clinical settings.

In summary, the results highlight the potential clinical
utility of the proposed spectrogram-based CNN with lead-
aware attention for prioritizing Chagas testing. While the
current performance is encouraging, further methodologi-
cal and data-driven improvements are required to enhance
accuracy and support deployment in real-world healthcare
environments.

4. Conclusion

This study presented HEART, a hybrid ECG analysis
system leveraging spectrogram-based CNNs with a lead-
aware attention mechanism for Chagas disease detection.
Our approach achieved a Challenge Score of 0.303 while
maintaining computational efficiency with only 5 million
parameters.

Key contributions include: (1) A novel attention mech-
anism that adaptively weights ECG leads to ensure robust-
ness against missing or corrupted data; (2) A comprehen-
sive preprocessing pipeline combining STFT-based spec-
trograms with targeted augmentation strategies; (3) Suc-
cessful integration of heterogeneous datasets with varying
label quality through a unified training framework.

Our results demonstrate that automated ECG analysis
can effectively prioritize patients for serological confirma-
tion in resource-constrained settings. The model identi-
fied 30.3 % of Chagas-positive cases within the top 5 % of
rankings, significantly exceeding random selection.

However, there are limitations: reliance on weak labels
from the CODE-15 % dataset may have introduced noise,
and the current architecture does not explicitly model tem-
poral dependencies between heartbeats, potentially miss-
ing subtle rhythm abnormalities.

Future work will focus on: (1) Implementing semi-
supervised learning techniques to better leverage weakly

labeled data; (2) Integrating unsupervised pre-training ap-
proaches to enhance ECG representations; (3) Develop-
ing uncertainty quantification methods to identify cases re-
quiring expert review. We also plan to explore multi-task
learning frameworks that jointly predict Chagas status and
related cardiac conditions to improve diagnostic accuracy
and clinical interpretability.
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