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Abstract 

The 12-lead electrocardiogram (ECG) provides 

multiple spatial perspectives of cardiac activity, but its 

format complicates direct use in deep learning. We 

propose a framework that embeds ECG signals into 

structured 2D images while preserving inter-lead 

dependencies and aligns the image encoder with a 

pretrained ECG foundation model using cosine similarity. 

EfficientNetV2-S was employed for Chagas disease 

classification, with preprocessing steps, structured image 

construction, and physiologically motivated 

augmentations. Experiments used PTB-XL, SaMi-Trop, 

and CODE-15% datasets in the PhysioNet Challenge 

2025 setting. The model achieved a score of 0.507 in 5-

fold cross-validation and 0.369 on the hidden validation 

set, ranking 34st of 368 submissions. The score reflects 

the fraction of Chagas patients prioritized in the top 5% 

of the cohort. These results indicate that physiologically 

grounded image construction with foundation model 

alignment enables robust ECG classification, offering a 

scalable approach that generalizes beyond Chagas 

disease. 

 

 

1. Introduction 

The standard 12-lead electrocardiogram (ECG) records 

cardiac activity through twelve one-dimensional signals, 

each offering a distinct spatial perspective. This format 

poses challenges for deep learning, as spatial 

relationships between leads are difficult to capture, 

limiting the integration of recent advances in computer 

vision, where pretrained models and established 

architectures have driven substantial progress. 

Transforming ECGs into structured 2D images that 

preserve inter-lead dependencies offers a way to bridge 

this gap, enabling the use of pretrained vision models and 

reducing reliance on large domain-specific datasets. To 

further enhance these representations, we align image 

encoder features with those from a foundation ECG 

model [1] using cosine similarity, a lightweight step 

inspired by REPA [2], which embeds explicit 

physiological knowledge while maintaining compatibility 

with vision backbones. 

We evaluate this framework in the context of Chagas 

disease, a parasitic condition often underdiagnosed due to 

nonspecific symptoms and limited access to serological 

testing. Applied to the George B. Moody PhysioNet 

Challenge 2025, our method demonstrates accurate and 

efficient classification. Beyond Chagas, the framework 

provides a general strategy for integrating ECG 

foundation models with computer vision, supporting 

scalable and physiologically grounded ECG diagnostics. 

 

2. Methods 

In this section, we describe the methodology used in 

our study. Figure 1 illustrates the overall framework. We 

first introduce the datasets used, followed by the 

preprocessing steps, the architecture of our deep learning 

model, and the experimental settings employed for 

evaluation. 

 

2.1. Dataset 

In this study, we used three publicly available 12-lead 

ECG datasets: PTB-XL [3], SaMi-Trop [4], and CODE-

15% [5]. Chagas labels for the CODE-15% dataset were 

obtained from the PhysioNet Challenge 2025. The PTB-

XL dataset contains 21,799 recordings collected in 

Europe between 1989 and 1996, each 10 seconds long 



with a sampling frequency of 500 Hz. Since PTB-XL 

patients are presumably non-Chagas, all Chagas labels are 

assumed negative. The SaMi-Trop dataset comprises 

1,631 recordings collected from Chagas patients in Brazil 

between 2011 and 2012, with durations of 7.3 or 10.2 

seconds and a sampling frequency of 400 Hz. All labels 

in this dataset are positive and validated by serological 

tests. The CODE-15% dataset includes over 300,000 

recordings collected in Brazil from 2010 to 2016, with 

durations of 7.3 or 10.2 seconds and a sampling 

frequency of 400 Hz. Chagas labels in CODE-15% are 

self-reported, reflecting regional disease prevalence, and 

include both positive and negative cases 

 

2.2. Preprocessing 

Our framework required two distinct inputs: one for 

the image classification model and another for the ECG 

foundation model. To reduce artifacts and baseline drift, 

we first estimated and subtracted the baseline from each 

signal. This was achieved using a moving-average filter, 

which can be mathematically interpreted as a sinc-

function approximation of a low-pass filter. For 

computational efficiency, baseline estimation was 

implemented with cumulative sums, a stable and 

significantly faster alternative to direct convolution. 

Because the datasets differed in sampling frequency, 

all signals were resampled to 500 Hz using the 

librosa.resample function, which internally relies on the 

high-quality SoX resampling algorithm. To ensure 

uniform input length, signals shorter than 10 seconds 

were zero-padded, while longer signals were truncated to 

10 seconds. 

For the foundation model input, signals were 

standardized using z-score normalization, consistent with 

prior preprocessing protocols in foundation ECG models. 

For the image classification model, a 3-second segment 

was randomly sampled from the unnormalized 10-second 

recording. Following lead-mixup augmentation (Section 

2.3), the twelve 3-second signals were embedded into a 

structured 2D image representation. 

 

2.2.1. Image construction 

Constructing physiologically meaningful images from 

ECG signals requires preserving inter-lead spatial 

relationships. A straightforward method is to arrange one-

dimensional auxiliary signals along the temporal axis, 

stacking them to form a 2D representation. A key insight 

is that the standard 12-lead ECGs are not independent 

signals but rather twelve heuristic projections of a 

dynamic body-surface potential map, recorded at nine 

electrode sites. Thus, an effective image representation 

should approximate this underlying potential distribution 

while maintaining compatibility with vision-based models. 

To achieve this, we constructed a 3-channel image 

representation analogous to RGB channels in natural 

images. Each channel corresponded to a distinct contour 

on the body surface, defined with respect to a reference 

electrode: right arm (RA), left arm (LA), or left leg (LL). 

Signals were ordered along each contour, and since all 

augmented limb and precordial leads share Wilson’s 

Figure 1. Overall architecture of the proposed framework. Raw 12-lead ECG signals undergo preprocessing before 

being embedded into structured 2D images. Physiologically motivated augmentations are applied at both signal and 

image levels. EfficientNetV2-S, initialized with pretrained weights, is used as the encoder, with alignment to an ECG 

foundation model via cosine similarity. For the PhysioNet Challenge hidden validation set, inference was performed by 

averaging probabilities from 5 models trained with 5-fold cross-validation. 

 



central terminal (WCT) as a common reference, the 

reference augmented limb lead signal was subtracted to 

obtain potentials relative to RA, LA, or LL. The resulting 

configuration can be summarized as: Channel 1 (LL, V1–

V6, LA / ref = RA), Channel 2 (RA, V1–V6, LL / ref = 

LA), Channel 3 (RA, V1–V6, LA / ref = LL). 

This contour-based construction provides a structured 

approximation of the body-surface potential map, 

encoding spatial dependencies between leads while 

maintaining interpretability for both clinical and 

computational analysis. Recent approaches that arrange 

auxiliary signals along a hexaxial reference system [1], 

though less directly interpretable physically, can be 

regarded as a special case of this method, where 

potentials across the triangular contour defined by RA, 

LA, and LL are linearly approximated. 

Finally, the resulting signals were clipped to the range 

of −3 to 3 and each limit was linearly mapped to a 0–255 

scale. The image was then resized from an original 

resolution of 8 × timestamps to 24 × 2048, producing the 

final structured input for the image classification model 

 

2.3. Deep learning model 

    The architecture of our framework is illustrated in 

Figure 1. For image-based ECG classification, we 

employed EfficientNetV2-S[6] as the encoder backbone. 

This CNN architecture combines Fused-MBConv and 

MBConv layers, optimized via neural architecture search 

to improve both training speed and accuracy. Unlike 

transformer-based models such as ViT [7], 

EfficientNetV2-S does not require fixed input dimensions, 

enabling direct processing of our unconventional 24 × 

2048 ECG images. The network was initialized with 

pretrained weights and finetuned using asymmetric binary 

cross-entropy loss [8], which is well-suited for handling 

class imbalance in binary classification tasks. 

Training solely on a single binary label poses a 

challenge, as the model may focus on spurious features 

rather than physiologically meaningful patterns. To 

address this, we leveraged features from a pre-trained 

ECG foundation model built on a RegNet [9] architecture 

trained on over 10 million recordings. Since the feature 

representations of the vision and ECG foundation models 

differ, we employed a projection module—comprising a 

depthwise convolution, SiLU activation, and an MLP—to 

map the vision features to the same dimensional space as 

the ECG features. During training, cosine similarity loss 

was applied to align the features of the image encoder 

with those of the ECG foundation model, following the 

approach inspired by REPA. The aligned features were 

then passed through a classification head to predict 

Chagas disease logits. 

 

 

2.3.1. Data augmentation 

To improve model generalizability and robustness, we 

employed data augmentation techniques both before and 

after constructing the image representation. Prior to 

image construction, we applied lead-mixup augmentation, 

where each of the nine patch signals was perturbed by 

linearly interpolating between it and eight other patches, 

with the interpolation coefficients sampled from a 

Gaussian distribution. This reflects the physiological 

insight that slight variations in electrode positions do not 

alter the diagnostic information. 

After constructing the image, we applied a series of 

augmentations using the Albumentations [10] library. The 

augmentation pipeline was carefully curated to ensure 

that transformations remained physiologically meaningful. 

It included random grid shuffling, coarse dropout, small 

shift-scale-rotation transformations, Gaussian noise, 

blurring or downscaling, and mild color perturbations. 

 

2.4. Experimental settings 

We conducted extensive experiments to identify 

optimal training configurations for our framework. For 

the backbone encoder, we evaluated EfficientNet [11], 

EfficientNetV2, ConvNeXt [12], and ConvNeXtV2 [13]. 

Among these, EfficientNetV2-S achieved the best balance 

between performance and computational efficiency and 

was therefore adopted in all subsequent experiments. The 

model was trained for 20 epochs using the AdamW 

optimizer with a constant learning rate of 2 × 10⁻⁵. 

Regarding input resolution, we systematically tested 

multiple image sizes and found that 24 × 2048 yielded the 

most stable and accurate results. For lead-mixup 

augmentation, interpolation coefficients were sampled 

from a Gaussian distribution with a standard deviation of 

0.1, ensuring perturbations remained physiologically 

realistic. Training employed asymmetric binary cross-

entropy loss with parameters γ⁺ = 0, γ⁻ = 2 and a positive-

class weighting factor of 10 to mitigate class imbalance. 

To integrate physiological knowledge, we 

experimented with projection alignment across multiple 

intermediate layers of the encoder. However, applying the 

projection loss only at the final feature layer produced 

superior performance. The projection loss was weighted 

by a coefficient of 0.5 to maintain balance with the 

primary classification loss. We also tested strategies to 

rebalance the dataset by oversampling positive Chagas 

cases, but performance was consistently superior when 

using the original dataset distribution without resampling. 

All experiments were rigorously validated using 5-fold 

cross-validation to ensure robustness and generalizability 

of the results. 

  



3. Results 

The performance of our framework is summarized in 

Table 1. In internal evaluation with given train set, the 

model achieved a challenge score of 0.507 across 5-fold 

cross-validation. When applied to the hidden validation 

set of the PhysioNet Challenge 2025, the model obtained 

a score of 0.369, corresponding to a ranking of 31st 

among 368 submissions. The challenge score is defined 

as the fraction of Chagas patients correctly prioritized 

within the top 5% of the cohort, as specified by the 

competition rules. 

 

Dataset Challenge Score Rank 

Train set (5-fold 

cross-validation) 

0.507 - 

Hidden validation set 0.369 34/368 

Table 1. Performance of our final model on the training 

and official validation sets of the PhysioNet Challenge 

2025. 

 

4.  Discussion and conclusions 

In this study, we introduced a framework integrating 

conventional ECG analysis with computer vision through 

structured image construction. By embedding ECG 

signals into physiologically informed 2D representations, 

our approach preserves inter-lead dependencies and 

enables the use of pretrained vision backbones. Aligning 

image encoder features with a foundation ECG model 

using cosine similarity (REPA-inspired projection) 

further incorporated domain knowledge, improving 

learning efficiency and diagnostic relevance. 

Our results demonstrate effectiveness for Chagas 

disease detection, achieving competitive performance in 

the PhysioNet Challenge 2025. The ability to leverage 

pretrained models across computer vision and ECG 

modeling underscores the flexibility of the approach and 

its potential for broader biomedical applications. 

Several limitations remain. We prioritized 

computational efficiency over spectral precision, using 

moving-average baseline removal instead of FFT-based 

filtering. The datasets were also heterogeneous in labeling 

quality, with strong labels from SaMi-Trop and PTB-XL 

but weaker self-reported labels from CODE-15%, likely 

contributing to the performance gap between cross-

validation and the hidden validation set. Additional high-

quality data or semi-supervised strategies could improve 

robustness to unseen distributions. 

In conclusion, the framework offers a scalable and 

physiologically grounded direction for ECG-based 

diagnostics by bridging ECG foundation models with 

computer vision. Future work should refine preprocessing, 

explore semi-supervised training, and validate across 

diverse cohorts to enhance generalizability. 
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