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Abstract

Automated ECG-based detection of Chagas disease, the
focus of the 2025 PhysioNet Challenge, presents two ma-
jor challenges: noisy supervision due to the self-reported
weak labels in the CODE-15% dataset and severe class im-
balance (2% prevalence). We address both issues through
large-scale pretraining and dataset-asymmetric finetuning.

We combine the complementary strengths of attention-
based models and recurrent architectures by pretraining
multiple foundation models — masked autoencoding trans-
formers and xLSTMs trained with simDINOv2. This en-
ables the learning of low-level ECG representations with-
out relying on label quality. During finetuning, we utilise
the known disparity in label noise between datasets by ap-
plying smooth labelling to the CODE-15% dataset, where
the labels are self-reported, but not to the PTB-XL or Sami-
Trop datasets where the labels are more reliable. To reduce
class imbalance, we oversample positives during training
to enforce a 5% prevalence.

Our team (DlaskaLabMUI) ranked 3rd on the leader-
board with a score of 0.440 on the hidden validation set.

1. Introduction

In the 2025 PhysioNet Challenge [1,[2], the focus was
electrocardiogram (ECG)-based detection of Chagas dis-
ease. ECGs are desirable for Chagas classification as they
are a low-cost, non-invasive tool that could inform the use
of limited serological testing capacities.

The challenge presents two substantial hurdles. First,
the CODE-15% dataset contains labels derived from self-
reported diagnoses, which introduces substantial label un-
certainty. Second, the prevalence of Chagas disease within
the whole training set is approximately 2%, creating a
highly imbalanced classification task. These conditions
necessitate approaches that are robust to weak supervision
and rare positives.

In this work, we combine large-scale self-supervised

(SSL) pretraining of conceptually different foundation
models with dataset-specific fine-tuning that accounts ex-
plicitly for label quality and class imbalance.

2. Methods

Data For pretraining we used the CODE dataset of 8M
ECGs [3]]. CODE is a large dataset collected by the Tele-
health Network of Minas Gerais (TNMG), Brazil [4]. The
xLSTM model was additionally pretrained on INCART
[5]l, Chapman [6] and Ningbo [7]]. For finetuning we used
the datasets provided in the 2025 PhysioNet Challenge
[1L)2]: CODE-15% [8]], PTB-XL [9], and Sami-Trop [[10].

We split patients into train/val/test (85.5/4.5/10%) and
used results on the validation set for model selection. In
order to avoid confusion with the hidden validation and
hidden test sets these internal sets will be named the ‘inter-
nal validation’ and ‘internal test’ sets.

Model Architectures and Pretraining

Previous work uses convolutional neural networks
(CNNis) for Chagas classification [[11]]. We instead use an
ensemble of vision transformers [12]] and xLSTMs [13]],
leveraging their complementary strengths in large-scale
pretraining and temporal modelling.

Transformers. We adopt masked autoencoding [14,/15]],
where an encoder-decoder architecture reconstructs an in-
put signal from a masked set of patches — see Figure[I] for
an overview. First, the input signal is flattened and split
into non-overlapping patches. These patches are then lin-
early encoded into tokens and a positional embedding is
added. Each patch contains information from just one lead
and hence self-attention is applied across both time and
leads. During pretraining, 80% of tokens are randomly
masked and the encoder processes only the visible sub-
set. The decoder reconstructs the full signal from visi-
ble embeddings and shared mask tokens, with MSE loss
against the original ECG. Positional embeddings are re-
applied at the decoder to localise mask tokens. Compared
to ST-MEM [15]], which uses lead-wise decoding, our de-
sign uses a simpler positional embedding and relies on
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Figure 1. Transformer models are pretrained using masked autoencoding (top), where patches are randomly masked before
being passed to the encoder and then reconstructed by the decoder. The xXLSTM model is pretrained using SimDINOvV2,
a teacher-student SSL learning paradigm (middle), where the student predicts the features of the moving average teacher.
During finetuning (bottom), there is an asymmetric treatment of labels, with smoothing applied to self-reported labels

(CODE-15%) but not reliable labels (PTB-XL and Sami-Trop).

high mask ratios to enforce non-trivial learning. During
finetuning, the classifier (CLS) token is passed to a linear
head to predict Chagas likelihood.

xLSTMs. xLSTMs extend classic LSTMs with sSLSTM
and mLSTM blocks that improve scalability and gradi-
ent flow on long sequences [13]. Vision-LSTM later in-
troduced bidirectional variants as an alternative to vision
transformers [[16]. We combine these ideas by stacking al-
ternating SLSTM and mLSTM layers in a bidirectional pat-
tern (e.g., s, S, m, m, s, s, ...), where each layer processes
the sequence in the opposite direction to the previous one.
This design preserves recurrent inductive biases while in-
tegrating information across both temporal directions at
depth. Unlike the transformers, which patchify each lead
independently, xXLSTM patches span all 12 leads. Pre-
training follows SimDINOv2 [17]], a stable non-contrastive
teacher—student SSL framework with multi-view augmen-
tations. Using CODE’s multiple ECGs per patient, we
generate global-local pairs both within and across signals
from the same individual, encouraging patient-invariant
but diverse embeddings via a coding-rate regulariser.

Hyperparameters. For transformers, we pretrain a base
(86M parameters) and large (177M) model with AdamW,
where in each case, the decoder was an order of magni-
tude smaller than the encoder (see Table [T). This makes

the MAE pretraining more efficient, as only the decoder
requires the full sequence of tokens. We pretrain a single
xLSTM (57M parameters), using the hyperparameters in
Table [I] We preprocessed ECGs by resampling to a con-
sistent frequency depending on the model. For the xL-
STM, we apply augmentations including drop-lead (0.2),
jitter (0.1), amplitude scaling (0.1), and batch-wise base-
line shuffle. The transformers use bandpass filtering (0.5-
60Hz), lead-wise Z-score normalisation, and for a consis-
tent input length of 3072 samples in each lead (7.68s), we
employ random padding and random cropping. Pretrain-
ing took 3 days (base transformer and xXLSTM) to 13 days
(large transformer) on an H100 GPU.

Finetuning During supervised training, we differentiated
between datasets based on label noise:

o CODE-15%: Labels derived from self-reports. We ap-
plied label smoothing (smoothing factor & = 0.2) to ac-
count for uncertainty.

o Sami-Trop: Serologically confirmed labels. No label
smoothing was applied.

o PTB-XL: Assumed negative labels — sourced from a
non-endemic country. No label smoothing applied.

To address class imbalance, we oversampled positive
cases during minibatch construction to achieve an effective



Hyperparameter Base Transformer Large Transformer xLSTM Hyperparameter Model 1 Model 2 Model 3  Model 4
frequency 400 150 100 pretrained model B-Transformer ~L-Transformer XxLSTM  xLSTM
patch size 256 128 25 (x12) max epochs 12 40 12 12
input signal length 732s 732s 10s early stopping patience 5 8 5 5
total patches 144 84 40 monitor metric AUPRC Challenge AUPRC  AUPRC
mask ratio 0.80 0.80 0.30 warmup epochs 1 1 1 1
number of heads 12 12 4 learning rate (Ir) 0.00005 0.00005 0.00001  0.00001
layers 12 16 9 linear Ir 0.00005 0.00005 0.0001 0.0001
dimensions 768 960 1024 hard restarts 0 4 0 0
projected-dim 3072 3840 2048 hard restart decay - 0.5 - -
register tokens 4 4 0 weight decay 0.05 0.05 0.05 0.05
parameters 86M 177M 5TM drop path 0.2 0.5 0.5 0.5
decoder layers 4 4 - layer-wise Ir decay 0.75 0.75 0.75 0.75
decoder dimensions 384 384 - gradient clipping 0.5 0.5 0.5 0.5
decoder projected-dim 1536 1536 - batch size 112 112 128 128
decoder nhead 6 6 - final layernorm - - True False
decoder parameters ™ ™ - batchnorm output - - False True
ff;f::sp epochs 1?0 2(1)0 550 Table 2. Finetuning hyperparameters. In the ensemble,
learning rate 0.0001 0.001 0.0001 Model 2 is trained twice with different random seeds for
weight decay 0.05 0.05 0.04 the train/val split
final wd 0.05 0.05 0.4 plit.
gradient clipping 0.5 05 3.0 —— All(AUC = 0.86) —— All (AUPRC = 0.23)
batch size 2048 1024 512 CODE-15% (AUC = 0.86) CODE-15% (AUPRC = 0.23)
pretraining time (HIOO) 3 days 13 days 3 days ~——— Sami-Trop and PTB-XL (AUC = 1.00) —— Sami-Trop and PTB-XL (AUPRC = 0.92)
initial EMA E B 0.99 10 1o
final EMA - - 1.0 ‘ H/L«M/\
global crops - - 2 P 08 08
global crop size - - 0.8 “E 06 o6 /“
local crops - - 4 2 k] Wy
local crop size - - 0.4 % o.all/ Eos "‘\‘

Table 1. SSL hyperparameters. projected-dim refers to s 02 o
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prevalence of 5%. We hypothesise this works well because
it matches the challenge score metric’s threshold. Both the
label smoothing and oversampling were optimised based
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on internal test set challenge scores.

We found an ensemble of models performed optimally
and used performance on the internal validation and in-
ternal test sets to select the optimal set of hyperparame-
ters. Table[2]contains these hyperparameters. An ensemble
of 5 models, where the logit outputs are averaged, gave a
good trade-off between training/inference time and perfor-
mance. All models were trained with a cosine annealing
learning rate, with Model 2 using hard restarts once the
learning rate had reduced to 0. In each finetuning run, the
final model is the model which achieved the highest valida-
tion performance by either area under the precision recall
curve (AUPRC) or the challenge metric (Table[T).

To reduce overfitting, regularisation was applied. We
used a linearly decaying drop path [18]], where transformer
blocks/xLLSTM blocks are randomly skipped during train-
ing. Similarly, a layer-wise learning rate decay was applied
so that larger updates were made to later layers.

3. Results
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Figure 2. AUC (top left), AUPRC (top right) and predic-
tions (bottom) for Model 1 on the internal test set.

sults for several individual models, as well as ensembles,
on the internal test set and hidden validation set. The se-
lected ensemble had a challenge score 0.023 higher than
an ensemble of 5 Model 1s, but only an increase of 0.004
on the hidden validation set.

To evaluate the importance of ensembling, we submit-
ted an ensemble of 5 Model 1s and saw an increase of
0.026 on the hidden validation set. However, the small
increase in internal test set challenge score when ensem-
bling Model 2 suggests this increase will depend on the
underlying model. By choosing multiple different hyper-
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Our method ranked 3rd on the challenge leaderboard
with a score of 0.440 on the hidden validation set.

We found performance improvements on the internal
test set, mainly based on CODE-15%, did not translate
well to the hidden validation set. Table 4] contains the re-

Table 3. Challenge scores for our selected entry, including
the ranking of our team (DlaskalLabMUI) on the hidden
validation set. We used repeated scoring on the hidden
validation set, and one-time scoring on the hidden test set.



Model Name Training Internal Test ~ Validation
Model 1 0.403 4+ 0.022 0.475 0.410
Model 1 Ensemble - 0.489 0.436
Model 2 0.458 +0.017 0.484 -
Model 2 Ensemble - 0.490 -
Selected Ensemble - 0.511 0.440

Table 4. Challenge scores on the internal test, hidden val-
idation, and 5-fold cross validated training sets.

parameters and architectures we aim to increase the diver-
sity within the ensemble and improve performance.

Figure |2| details the results for Model 1 on the internal
test set which achieved an area under the receiver operator
characteristic curve (AUC) of 0.86. Notably, the model
was near perfect for the trusted labels in Sami-Trop and
PTB-XL with an AUC of 1.00 and AUPRC of 0.92. The
effect of the soft labels for CODE-15% can be seen in the
distributions of sigmoid outputs in Figure[2]

4. Discussion and Conclusions

The results suggest that large-scale SSL pretraining of
both transformers and XxLSTMs can effectively capture
ECG structure and generalize across datasets with noisy
labels. Fine-tuning with dataset-specific adjustment of la-
bels improved performance, particularly on the datasets
for which we had reliable labels. Oversampling positives
helped mitigate extreme class imbalance, although often
led to overfitting in development which required careful
use of early stopping criteria and regularisation.

We present an ensemble taking advantage of the differ-
ent representations of attention-based transformers and re-
current XLSTMs. Through self-supervised learning and
label-noise-aware fine-tuning we address noisy supervi-
sion and class imbalance in ECG-based Chagas disease
classification.
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