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Abstract

Chagas disease (ChD) is a chronic parasitic condition
that can lead to severe cardiac complications. The use
of electrocardiographic (ECG) analysis has emerged as
a promising tool for early, non-invasive detection. This
work, developed by the EPBandoleroLab team for the Phy-
sioNet Challenge 2025, presents a deep learning approach
for ChD classification using the CODE-15, SaMi-Trop,
and PTB-XL databases. Our methodology explores the
effectiveness of different signal representations, compar-
ing the standard 12-lead ECG with the derived Vectorcar-
diogram (VCG). Furthermore, we address the significant
class imbalance through a controlled sampling strategy.
Our findings indicate that the model performs best when
trained on the full 12-lead ECG representation with a mod-
erately imbalanced dataset. This configuration achieved a
Challenge Score of 0.259 in the official phase, placing our
team in the top half of all competitors.

1. Introduction

ChD, or American trypanosomiasis, is a neglected tropi-
cal disease caused by the protozoan Trypanosoma cruzi. It
affects over 7 million people worldwide, mainly in Latin
America, and leads to severe cardiac complications, in-
cluding heart failure and sudden death, especially in its
chronic phase [1]. Transmission occurs predominantly via
triatomine insects (”kissing bugs”), but also through con-
genital routes, blood transfusion, and ingestion of contam-
inated food [1, 2].

Although the acute phase is often asymptomatic, a sig-
nificant proportion of patients develop chronic ChD car-
diomyopathy, characterized by ventricular dysfunction,
thromboembolism, arrhythmias and dysautonomia [3].
Early diagnosis is crucial but is often hindered by limited
access to serological testing in rural or under-resourced
settings [4].

ECG, as a low-cost and widely available diagnostic tool,
holds promise for detecting early signs of chronic ChD car-

diomyopathy. Certain alterations in ECG, such as right
bundle branch block, premature ventricular beats, ST-T
changes, abnormal Q waves, various degrees of AV block,
sick sinus syndrome and low QRS voltage, may suggest
ChD even in asymptomatic individuals [3, 5].

The 2025 PhysioNet Challenge focuses precisely on this
problem: detecting ChD disease using standard 12-lead
ECG recordings via machine learning and deep learning
methods[6].

Recent studies have demonstrated the significant
promise of applying artificial intelligence (AI) to ECG-
based disease detection. Notably, deep neural networks
have been shown to outperform medical residents in classi-
fying various cardiac conditions [7] and have successfully
automated the classification of numerous arrhythmias with
high accuracy [8]. These findings underscore the growing
potential of deep learning to support clinical diagnosis in
cardiology.

This challenge aims to develop scalable, AI-powered
tools for the early, preclinical diagnosis of ChD from a
10-second ECG, enabling timely intervention for at-risk
individuals before irreversible cardiac damage occurs.

2. Materials

The dataset provided for the PhysioNet Challenge 2025
comprises three distinct ECG databases, each offering
unique characteristics relevant to the Chagas detection task
[6]:
• CODE-15%: A subset of the larger CODE cohort, it
includes over 300,000 ECGs collected in Brazil between
2010 and 2016. The dataset is provided in 18 distinct par-
titions. Each ECG lasts approximately 7.3 to 10.2 seconds
and was recorded at around 400 Hz. The Chagas labels in
this set are self-reported (i.e., weak labels) with unknown
accuracy and low prevalence, adding real-world noise and
variability to the training data [9].

• SaMi-Trop: This cohort includes 1,631 12-lead ECGs
collected between 2011 and 2012 from Brazilian patients
in endemic areas. Importantly, Chagas diagnoses are sero-



logically confirmed, making this the only strongly labeled
positive dataset [10].

• PTB-XL: This European dataset consists of 21,799
ECGs, recorded at 500 Hz with 10-second duration. Due to
its geographical origin (Germany), it is assumed to contain
only Chagas-negative cases, offering a high-quality nega-
tive class with low noise [11].

To create a robust external test set for evaluating gen-
eralization, we randomly held out two of the eighteen
CODE-15% partitions. This held-out set was reserved ex-
clusively for final testing and was not used during training
or hyperparameter tuning.

The remaining data, including the other 16 CODE-15%
partitions, SaMi-Trop, and PTB-XL constituted our devel-
opment set. From this set, various experimental subsets
were generated using a data sampling strategy, which is
further detailed in the Methods section. Each of these sub-
sets was then split at the patient level into training (70%)
and validation (30%) partitions.

The final test set, used for the official evaluation and
ranking of competitors, remains hidden and is exclusively
accessed by the event organizers.

3. Methods

3.1. Data Selection and Preprocessing

Due to a class imbalance favoring negative cases, a data
selection strategy was implemented. While all positive
records from the three databases were included, negative
samples were filtered based on demographic characteris-
tics (age and gender). This allowed us to control the ratio
between negative and positive records using a balancing
parameter R to experimentally investigate whether a con-
trolled imbalance is beneficial for the model’s generaliza-
tion.

The signals were preprocessed by resampling to 400
Hz, followed by a two-stage filtering process (median and
wavelet) to remove noise. Each lead was then standardized
using Z-score normalization. To create fixed-length in-
puts, signals were segmented into 1024-sample windows.
Patient-level data splits were enforced to prevent data leak-
age, and the final inference for a record is the average of
its segment probabilities.

3.2. Signal Representation: ECG vs. VCG

To determine the most effective input representation,
an experimental comparison was conducted between two
modalities. The first is the standard 12-lead ECG, which
provides detailed temporal information of the cardiac vec-
tor voltage from multiple anatomical perspectives.

As an alternative, the VCG was evaluated, a three-
dimensional representation of the heart’s electrical activity
mathematically derived from the 12 leads using the inverse
Dower transformation matrix. The VCG projects the in-
formation onto three orthogonal axes (X, Y, Z), offering a
spatial view of the cardiac vector.

The underlying hypothesis is that the VCG, by elimi-
nating the inherent redundancy among ECG leads, could
allow the model to learn global diagnostic features more
efficiently [12]. However, it is important to acknowledge
that the Dower transformation is an estimate of the true
cardiac vector, not a direct measurement, which entails the
risk of introducing slight signal distortion. This experi-
ment therefore investigates whether the benefit of a com-
pact and non-redundant representation outweighs the po-
tential loss of fidelity, building on previous studies indicat-
ing that key diagnostic information is largely preserved.

3.3. Hybrid Model Architecture

A hybrid architecture was designed to use a CNN for
feature extraction and a Transformer for contextual model-
ing. The Transformer’s output is fed into a Multilayer Per-
ceptron (MLP) for the final classification. Figure 1 shows
a diagram of this architecture.

The stack of 1D convolutional layers processes the in-
put signal. This part acts as a local feature extractor,
learning to identify morphological patterns in the signal.
Through layers of convolution, normalization, and pool-
ing, the CNN transforms the signal into a shorter, denser
sequence of feature vectors.

The feature sequence generated by the CNN is fed into a
Transformer encoder. This component, through its multi-
head self-attention mechanism, models long-term tempo-
ral dependencies in the signal. A special classification to-
ken ([CLS]) is prepended to the sequence to aggregate the
contextual information of the entire segment into a single
representation vector.

The feature vector corresponding to the [CLS] token
is then passed to a final MLP. After an initial normaliza-
tion, the MLP projects the input through dense layers with
Dropout to produce a single logit, which is mapped to a
probability using a sigmoid function.

3.4. Training and Evaluation Strategy

For the experimentation, multiple development sets
were generated by varying the balance ratio and the signal
representation (ECG vs. VCG). Each configuration was
trained and its hyperparameters optimized using its own
training and validation subsets. The final performance of
each optimized configuration was evaluated on the external
test set to ensure a fair and rigorous comparison.



Figure 1. Model Architecture Scheme.

Each experimental configuration was trained using the
Adam optimizer, a Focal Loss function to address class
imbalance, and regularization techniques such as Lead
Dropout and a learning rate scheduler. To optimize the
model, an empirical hyperparameter search was conducted
(including learning rate, weight decay, alpha and gamma),
selecting the combination that maximized the AUPRC on
the validation set. Early stopping was employed to prevent
overfitting during this process.

4. Results and Discussions

4.1. Data Distribution and Sampling Strat-
egy

Table 1. Distribution of classes in the datasets used for
training and evaluation.
Dataset N Positives N Negatives Prevalence
Ratio 1:1 7392 7392 50.0%
Ratio 3:1 7392 22176 25.0%
Ratio 5:1 7392 36960 16.7%
External test 798 39003 2%

Table 1 summarizes the composition of the datasets
used. It details the three training set configurations gen-
erated by varying the balance ratio, along with the class
distribution of the fixed external test set, which has a 2%
prevalence of positives. This structure allows us to evalu-
ate how different training data compositions affect perfor-
mance in a realistic and consistent testing scenario.

4.2. Model Performance Analysis

The analysis of the results in Table 2 reveals two key
findings. First, increasing the balance ratio during train-
ing consistently improves performance. For example, in

Table 2. Performance in the external test set of the best
hiperparameters configuration found for each combination
of signal representation and balance ratio.
ID Repr. Ratio AUROC Challenge Score AUPRC
M1 ECG-12 1:1 0.805 0.363 0.139
M2 ECG-12 3:1 0.819 0.388 0.153
M3 ECG-12 5:1 0.811 0.405 0.160
M4 VCG-3 1:1 0.791 0.362 0.130
M5 ECG-3 3:1 0.805 0.377 0.146
M6 VCG-3 5:1 0.810 0.402 0.159

the ECG-12 representation, the Challenge Score rises from
0.363 (ratio 1:1) to 0.405 (ratio 5:1), demonstrating that
greater exposure to the diversity of negative cases benefits
model generalization.

Second, the 12-lead ECG representation slightly outper-
forms the VCG. Although the VCG is a compact represen-
tation, its performance is consistently lower, as observed
in the Challenge Score (0.405 for ECG-12 vs. 0.402 for
VCG-3 with a 5:1 ratio). A possible explanation is that the
Dower transformation, being an estimate, may introduce
subtle distortions that degrade diagnostic information.

Consequently, the M3 model (ECG-12, ratio 5:1)
emerges as the optimal configuration, underscoring the im-
portance of maximizing the volume of training data while
preserving the full richness of the original input signal.

Table 3. Final comparison of best performance by signal
representation in the external test set (2% prevalence).

Métrica ECG-12 (M3) VCG-3 (M6)
Challenge Score 0.405 0.402
AUPRC 0.160 0.159
AUC (AUROC) 0.811 0.810
F1-score 0.152 0.146
Precisión 0.088 0.842
Recall 0.564 0.551



Table 3 presents a direct performance comparison be-
tween our two best final configurations—one based on 12-
lead ECG (M3) and the other on 3-lead VCG (M6)—both
evaluated on the challenging external test set with a 2%
positive prevalence.

The analysis reveals that the model using the 12-
lead ECG representation demonstrates a consistent, albeit
slight, superiority across most key metrics. This reinforces
that while the VCG representation is more compact, the
unaltered signal information present in the full 12 leads is
beneficial for the model’s discriminative capacity in this
task.

The performance of the M3 model (ECG-12, 5:1 ra-
tio) is representative of an effective classifier in a realistic
screening scenario. It achieves a recall of 0.564, identify-
ing more than half of the affected individuals. The con-
sequence of this sensitivity in a low-prevalence environ-
ment is a precision of 0.088. This value, although numeri-
cally low, is more than four times higher than the 2% base-
line prevalence, demonstrating that the model’s alerts are
highly informative. The F1-score of 0.152 encapsulates
this inherent trade-off between detecting positive cases and
controlling false alarms.

5. Conclusion

This study demonstrates the potential of deep learning
as a tool for the early diagnosis of ChD. Our model can
function as an effective initial screening system. With a
sensitivity exceeding 56%, it could alert clinicians to per-
form a confirmatory serological test on more than half of
the affected patients.

The main limitation is its low precision, which leads to
a high rate of false positives—a common challenge in low-
prevalence problems. However, we propose its use as a
clinical decision support system, where the model’s alerts
act as a ”second reader” to motivate a more thorough re-
view of the case by a specialist. This synergy between AI
and clinical expertise represents a promising avenue for
improving early detection and preventing irreversible car-
diac damage.

The competitiveness of this approach was validated in
the official phase of the Physionet Challenge, where our
model achieved a Challenge Score of 0.259, placing us in
the top half of all participating teams.

Code Availability

The source code for the models and experiments pre-
sented in this paper is publicly available on GitHub at: EP-
BandoleroLab Team Code
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