
The Complex Interpretation of Heart Rate Variability Components in
Mechanically Ventilated Patients
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Abstract

Mechanical ventilation (MV) is a critical therapeutic in-
tervention to support patients with respiratory failure. Us-
ing a dataset of 54 adult ICU patients under MV, this study
analyzes respiratory signals and ECG-derived HRV data
to identify the appearance of additional frequency com-
ponents, particularly at harmonic frequencies, beyond the
traditional low-frequency (LF) and high-frequency (HF)
bands of HRV. It is observed that, in controlled and sup-
port ventilation modes, these additional harmonics appear
as a result of ventilator-induced respiratory signal mod-
ulations. This phenomenon occurs up to 93.39% of the
time in the controlled ventilation mode. Specifically, when
the second harmonic frequency exceeds half the heart rate,
aliasing occurs, manifesting as components at FHR − 2FR.
These findings underscore the importance of considering
these additional frequency components for a more com-
prehensive understanding of HRV and its role in assessing
the success of weaning from mechanical ventilation.

1. Introduction

Mechanical Ventilation (MV) is a therapeutic strategy
that involves assisting or replacing the respiratory function
of an individual through a mechanical device, when this
function is absent or insufficient for life. Its primary objec-
tive is to improve oxygenation and contribute to pulmonary
mechanics.

Ventilation modes include controlled, support, and con-

tinuous positive airway pressure (CPAP) [1]. Controlled
ventilation fully drives respiration, requiring no effort from
the patient. Support modes assist efforts by delivering par-
tial ventilation in response to pressure or flow changes.
CPAP maintains constant positive airway pressure during
expiration, but relies entirely on the patient’s spontaneous
breathing.

Invasive MV is required in approximately 40% of ICU
patients [2, 3], often due to critical pulmonary, neurolog-
ical, or cardiac conditions [4]. Although lifesaving, pro-
longed MV increases the risk of complications —e.g.,
ventilator-associated pneumonia, vocal cord injury, and
tracheomalacia— which exacerbate morbidity, mortality,
and hospital stays [5]. Timely recovery of spontaneous
breathing is therefore a key clinical goal. However, pre-
mature weaning can cause cardiopulmonary instability and
diaphragmatic dysfunction. The weaning process, which
involves the gradual withdrawal of ventilatory support and
extubation, remains a major challenge [3]. Despite the ex-
istence of established protocols for that, such as the sponta-
neous breathing trial (SBT), still 20% of extubated patients
require reintubation due to respiratory failure, leading to
worse outcomes [6].

Furthermore, there is a high incidence of autonomic ner-
vous system (ANS) dysfunction in ICU patients. Accord-
ingly, ANS markers, such as heart rate variability (HRV)
and other cardiopulmonary coupling (CPC) indices, have
been studied to improve weaning outcomes [7]. However,
the relationship between heart rate (HR) and respiration in
mechanically ventilated patients is complex, as evidenced



by the presence in HRV of additional components beyond
those typically observed in the low-frequency (LF) and
respiratory-related high-frequency (HF) ranges. The aim
of this study is to characterize the complex relationship
between heart rate and respiration in these patients, explor-
ing the potential origin and implications of these additional
components.

2. Materials and Methods

2.1. Data set

Lead II of the ECG and respiratory airflow signals of
54 adult intubated ICU patients (median age 69 [IQR:
61–78], 61.8% male), undergoing invasive mechanical
ventilation in controlled (50.36%), support (44.76%) or
CPAP (4.88%) modes, were continuously recorded during
the 24 hours preceding the SBT. Successful weaning was
achieved in 65.5% of the cases.

Recordings were acquired using the Better Care® con-
nectivity platform (Barcelona, Spain, U.S. Patent No.
12/538,940). This system is designed to acquire, standard-
ize, synchronize, analyze, and store digital signals from
bedside monitors and mechanical ventilators, with a sam-
pling frequency of 200 Hz.

The study protocol and database were approved by
the Institutional Review Boards of the Comitè d’Ètica
d’Investigació amb Medicaments of the Corporació
Sanitària Parc Taulı́ and the Clinical Research Ethics Com-
mittee of the Fundació Unió Catalana d’Hospitals [8].

2.2. Respiratory Signal Analysis

In this study, respiration is characterized through the
analysis of the tidal volume (TV) signal. It is obtained
by integrating the instantaneous airflow signal followed by
baseline subtraction [7]. Afterwards, signals were resam-
pled to 4 Hz.

The Power Spectral Density (PSD) of the TV signal,
ŜR(f), was estimated in 5-minute segments using Welch’s
periodogram with a 40-second Hamming window and a
35-second overlap.

Another relevant parameter is the respiratory rate (FR),
which was estimated as the frequency of the maximum
peak in ŜR(f) in the range (0.15, FHR

2 ) Hz, which covers
the entire spectrum of the respiratory signal in mechani-
cally ventilated patients.

2.3. ECG and HRV Analysis

QRS complexes in the ECG signal were detected using
a wavelet-based method [9]. The instantaneous HR signal
was derived from the detected beat occurrence times us-
ing the integral pulse frequency modulation model (IPFM)

[10], which takes into account the potential presence of
ectopic beats, and was resampled at 4 Hz, yielding dHR(n).
Then, the ANS modulating signal was obtained as m(n) =
dHR(n)−dHRm(n)

dHRm(n)
, where dHRm(n) was estimated by low-pass

filtering dHR(n) at 0.04 Hz to capture the HRV signal. This
approach enables the analysis of the frequency compo-
nents of HRV and provides insights into the autonomic
regulation of heart rate.

The PSD of the modulating signal, ŜHRV (f), was cal-
culated in 5-minute segments in the same way as ŜR(f).
To ensure high-quality signals and a robust methodology,
5-minute windows were discarded when more than 10% of
their duration was affected by signal loss or poor quality.
These issues may arise from the presence of ectopic beats,
arrhythmia episodes, or other anomalies in the ECG sig-
nal that compromise accurate heart rate detection and HRV
computation, as previously described in the literature [11].

2.4. Aliasing in HRV Signals

The additional components observed in the HRV signal
could be explained by considering that the intrinsic sam-
pling rate of HRV is determined by the heart rate (HR)
itself. This implies that the maximum physiologically rel-
evant frequency that can be analyzed is limited to half
the mean HR within the analyzed interval. However, if
the modulating signal carrying information from the ANS
activity includes frequency components that exceed this
limit, aliasing will occur at the natural heart-driven sam-
pling rate, resulting in the appearance of low-frequency
components below half the mean HR [12]. In mechani-
cally ventilated patients, ŜR(f) might exhibit components
not only at the main respiratory rate, FR, but also at its
harmonics. Thus, the component at 2FR might gener-
ate an alias in the HRV signal at FHR − 2FR, whenever
2FR > FHR

2 , and similar effects will occur at higher har-
monics, with a progressively reduced effect, as each suc-
cessive harmonic has less power. This results in the ap-
pearance of new frequency components in ŜHRV (f). In
windows where 2FR < FHR

2 , no aliasing occurs, and a new
component appears in the HRV spectrum at 2FR. How-
ever, when 2FR ≥ FHR

2 , aliasing occurs, and the compo-
nent manifests at FHR −2FR. In the case of FHR −3FR, there
is not a clear interpretation, as it is part of the LF band,
ΩLF = [0.04, 0.15]. An example of this aliasing effect
can be seen in Fig. 1.

2.5. Features and Statistical Analysis

Firstly, in order to identify when harmonics appear in
the respiratory signal, a search was performed for those
5-minute segments where the power associated with the
second harmonic of the respiratory signal is, at least, 5%
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Figure 1. PSD of the respiratory signal (in blue) and HRV
(in orange) reveals the appearance of components in the
HRV spectrum at a FHR − 2FR frequency, due to aliasing.

of the power at the fundamental respiratory peak, i.e.,
P R
2FR

> 0.05P R
FR

. The proportion of time within the 24-
hour recording where this condition is met was calculated,
along with the median in the selected time windows of the
following indices, which measure the relative power asso-
ciated with the second harmonic of respiration with respect

to the fundamental respiratory rate, both in ŜR(f) (
P R
2FR

P R
FR

)

and in ŜHRV (f), differentiating in this last case whether

aliasing is present (
P HRV
FHR−2FR

P HRV
FR

) or not (
P HRV
2FR

P HRV
FR

).

Lastly, the following indices were computed to assess
the relative contribution of respiratory components to HRV
power, as an indicator of the system’s output (HRV) rela-
tive to its input (respiration) in the cardiopulmonary cou-
pling (CPC) mechanism:

• α2(FR) =
P HRV
FR

P R
FR

• α2(2FR) =
P HRV
2FR

P R
2FR

, computed only in windows that do

not present aliasing (i.e., 2FR < FHR
2 )

• α2(FHR−2FR) =
P HRV
FHR−2FR

P R
2FR

, computed only in windows

where aliasing occurs (i.e., 2FR ≥ FHR
2 )

To evaluate the amplification of harmonic components
with respect to the fundamental frequency, the following
ratios were calculated using the previous indices: α2(2FR)

α2(FR)

and α2(FHR−2FR)
α2(FR)

.
To assess statistically significant differences between

ventilation modes, the Mann-Whitney U test has been per-
formed, and the significance level set to p-value < 0.05.

3. Results and Discussion

Cardiopulmonary coupling operates as a dynamic sys-
tem, where variations in the input (respiration) result in
corresponding changes in the output (HRV).

It is observed that, most of the time, frequency compo-
nents appear at ŜR(2FR). In the case of controlled ven-
tilation, the median percentage of time is 93.39% [IQR:
72.34-99.9%]. In support ventilation, it is 83.51% [58.55-
100%]. In CPAP, it is 83.33% [25.35-100%].

Fig. 2 shows the effect of a second harmonic at ŜR(2FR)
in power indices. A different behavior is observed be-
tween respiratory and HRV signals: the HRV signal ex-
hibits higher median values in the evaluated indices, espe-
cially in controlled and support modes. This suggests that
CPC works as the described system, where the respiratory
signal acts as the input (boxplot on the left) and the HRV
signal as the output (central and right boxplots, in the ab-
sence and presence of aliasing, respectively).

In both the controlled and support modes, with a strong
ventilator influence, additional components at 2FR and
FHR − 2FR appear in ŜHRV (f), which would not be found
in natural breathing. In the case of CPAP, which is a spon-
taneous mode, this effect is not visible.
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Figure 2. Distribution of power indices, obtained in 5-
minute segments where P R

2FR
> 0.05P R

FR
.

Fig. 3 illustrates power ratios in both non-aliasing and
aliasing scenarios. They represent the gain of the CPC sys-
tem, that is, how variations in the respiratory signal lead
to the presence of additional frequency components in the
HRV signal. It is observed that, in all ventilation modes,
especially in controlled and support modes, the occurrence
of harmonics in the respiratory signal results in the man-
ifestation of harmonics in the HRV signal, which will be
visible at different frequencies depending on the absence
or presence of aliasing.

It is worth noting the effect of amplification of higher
frequencies —a sort of high-pass behavior— which is not
characteristic of the ANS or CPC under normal conditions.
In addition to the aliasing effects explored, it is also plau-
sible that nonlinear interactions contribute to the appear-
ance of additional components in the HRV spectrum. This
highlights the need for further simulation studies that in-



corporate nonlinear relationships, in order to investigate
and better understand the physiological mechanisms un-
derlying this phenomenon.

Although some trends are observed between ventilation
modes, differences do not reach statistical significance.
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Figure 3. Distribution of the obtained ratios, in the ab-
sence of aliasing (left) and when aliasing occurs (right).

4. Conclusion

Mechanical ventilation generates a series of harmonics
in the respiratory signal, with the second harmonic being
the most prominent, which translates into the appearance
of new frequency components in the HRV signal beyond
the classical LF and HF bands. Since these components,
in some scenarios, exceed the FHR

2 threshold, they do not
always manifest at a frequency of 2FR, but may instead
appear as aliases at the frequency FHR − 2FR. These obser-
vations highlight the need for a new interpretation of the
HRV signal in machine-ventilated scenarios.
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