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Abstract 

Atrial fibrillation (AF) is a growing clinical challenge, 

with computational modeling proving valuable for 

understanding its mechanisms and guiding personalized 

therapies. In this study, we used a virtual cohort of 10 bi-

atrial geometries to investigate how different fibrosis 

modeling strategies affect AF vulnerability. We 

introduced a method to generate fibrotic patterns aligned 

with myocardial fiber orientation and incorporated TGF-

β1-mediated remodeling into the Koivumäki atrial model 

to simulate structural and electrical changes. A total of 

200 simulations were performed across multiple pacing 

sites and fibrosis conditions. Without fibrosis, AF was 

induced in only 22% of simulations, highlighting the role 

of fibrotic remodeling. The decoupling with ionic 

remodeling (D+IR) model yielded realistic arrhythmia 

rates (~46%) without parameter tuning. The anisotropy 

with ionic remodeling model (IA+IR) required additional 

diffusion adjustments to reach ~26%, while the 

decoupling model (D) alone led to unrealistically high 

inducibility (~60%). LA pacing, particularly near the 

RPVs, was most arrhythmogenic (~67%) compared to RA 

sites. These findings highlight the importance of fibrosis 

representation and pacing location in AF modeling and 

support the D+IR approach as a strong candidate for 

personalized simulations. 

 

1. Introduction 

Atrial fibrillation (AF) is the most common sustained 

arrhythmia, with its prevalence rising by over 30% in the 

past two decades and expected to grow further [1]. 

Computational modeling, particularly through virtual 

cohorts and digital twin technologies, offers new 

opportunities for improving AF diagnoses, prognoses, 

and treatments personalization [2].  

Among the key pro-arrhythmic features, atrial fibrosis 

plays a central role by altering conduction and promoting 

reentrant activity [3]. To accurately reflect the patient-

specific nature of AF, it is essential to integrate realistic 

fibrotic remodeling into computational models [4, 5]. 

 In this study, we use a virtual population of bi-atrial 

geometries to explore how different fibrosis modeling 

strategies affect AF vulnerability. We propose a novel 

technique for generating fibrotic patches aligned with 

myocardial fibers orientation and adapt the Koivumäki 

atrial cellular model to simulate TGF-β1-induced 

remodeling. By running simulations across different 

pacing sites and fibrosis configurations, we quantify how 

modeling choices influence AF vulnerability, advancing 

the development of more personalized and predictive 

cardiac models. 

 

2. Material and Methods 

2.1. Fibrosis assignment algorithm 

To simulate the spatial distribution of fibrosis in atrial 

tissue aligned with the myocardial fibers, we developed a 

custom algorithm that iteratively expands fibrotic regions 

from a set of initial seed nodes 𝑆 = {𝒔1, 𝒔2, … , 𝒔𝑛}. At 

each step, the algorithm evaluates the fiber direction 𝑭𝑖 at 

a given node 𝒗𝑖 and introduces a probabilistic rule for 

fibrosis propagation based on the angle between local 

fiber direction and neighboring node 𝒗𝑗 ∈ 𝑁(𝒗𝑖) vectors. 

Additionally, two parameters are considered: a global 

grade of directionality (grDir) and a global grade of 

aleatoriety (grAle). The former regulates how strongly the 

local fiber orientation influences fibrosis propagation, 

while the latter introduces stochastic variability into the 

spread.  

The process continues until the total amount of fibrosis 

reaches a predefined threshold 𝑝𝑒𝑟𝑐𝐿𝑖𝑚, calculated as: 

𝑃 =  
∑ 𝑓(𝒗𝑖)

𝑁𝑛𝑜𝑑𝑒𝑠

 

where 𝑓(𝒗𝑖) = 1 if the node is fibrotic, and 𝑓(𝒗𝑖) = 0 

otherwise. A schematic overview of this procedure is 

shown in Figure 1.



 
Figure 1. Flowchart describing fibrosis distribution 

algorithm. 

 

2.2. Computational domains 

N = 10 bi-atrial geometries were extracted from a 

larger dataset constructed using Statistical Shape 

Modeling (SSM) techniques [6]. Each was remeshed into 

a fine tetrahedral mesh with an average spatial resolution 

of 0.5 mm, yielding 644,240 ± 75,155 vertices and 

3,642,000 ± 425,150 elements per geometry. To preserve 

anatomical accuracy, original tissue classifications and 

fiber orientations from the SSM dataset were retained in 

all remeshed models (Figure 2A). 

 

2.3. Fibrotic substrate modeling 

To model the fibrotic substrate, we implemented three 

distinct approaches, referred to as: decoupling (D), 

decoupling with ionic remodeling (D+IR), and increased 

anisotropy with ionic remodeling (IA+IR). 

In the D model, fibrotic nodes were modeled as 

electrically non-conductive tissue by assigning null 

diffusion (D = 0 S/m), effectively simulating complete 

myocyte decoupling. 

The D+IR model, as proposed by [5], included both 

structural decoupling (achieved by randomly decoupling 

30% of the fibrotic nodes) and ionic remodeling induced 

by transforming growth factor β1 (TGF-β1), reflecting 

inflammation-driven electrophysiological changes [7]. 

The specific ionic modifications are summarized in Table 

1, with the corresponding transmembrane voltage (TV) 

trace shown in Figure 2B. These changes led to a 23.98% 

increase in APD, a 38.06% reduction in upstroke velocity, 

and a 2.56% shift in resting membrane potential, 

evaluated in a 2D simulation (0.3 x 2 x 0.025 cm, 2106 

nodes), compared with the persistent AF (PsAF) cellular 

model. 

The IA+IR model, based on [4], incorporated TGF-β1–

mediated ionic remodeling together with increased 

anisotropy, implemented as a 2:1 ratio of longitudinal to 

transverse conduction velocities. Baseline conduction 

properties used across all models, including the initial 

anisotropy ratio, were defined according to [11]. 

Additionally, a complementary analysis was performed 

for this model to assess the impact of reduced overall 

conductivity in fibrotic regions, where diffusion values 

were scaled to 50%, 25%, and 10% of those in non-

fibrotic tissue. 

Fibrosis extent was identical for each anatomical 

model and was defined according to the Utah Stage 4 

classification, resulting in fibrotic node percentages of 

35.9 ± 0.8% in the LA and 15.8 ± 0.5% in the RA, 

consistent with reported ranges in the literature (>30% in 

LA, 5–20% in RA) [8] (Figure 2C). 

 

Table 1. Multiplying factors to maximum ionic 

conductance. 

 Healthy PsAF TGF-β1 

gK1 1.00 2.00 1.40 

gKs 1.00 1.00 2.00 

gCaL 1.00 0.40 0.18 

gKur 1.00 0.80 0.80 

gto 1.00 0.56 0.56 

gNa 1.00 1.00 0.60 

 

2.4. Simulations framework 

Atrial biophysical simulations were conducted using 

the Koivumäki et al. cellular model [9], implemented 

within the monodomain model. Simulations used a GPU-

accelerated finite element solver [10] with a fixed time 

step of 20 μs. Nodes were classified as fibrotic or non-

fibrotic. Non-fibrotic nodes were assigned a 100% 

electrical remodeling profile, representative of PsAF with 

shortened action potential (APD90(2 Hz) = 103 ms) 

respect to the healthy model (APD90(2 Hz) = 240 ms) 

[11]. The resulting TV traces are shown in Figure 2B. 

AF inducibility was tested using a pacing protocol at 

five stimulus location (three in the LA, two in the RA), 

located near fibrotic regions (Figure 2D) [12]. Pacing 

followed a progressively shortening cycle length (from 

400 ms down to 140 ms). AF was considered induced if 

electrical activity persisted for at least five seconds 

following the final pacing stimulus. In total, 200 

simulations were performed across 10 patient geometries, 

4 models (no fibrosis, D, D+IR, IA+IR), and 5 

stimulation sites. 



 
Figure 2. (A) Representative atrial geometry with tissue 

types. (B) Transmembrane voltage traces for healthy 

(blue), PsAF (grey), and fibrotic (orange) tissue 

conditions. (C) Bi-atrial geometries employed with their 

fibrosis distribution. (D) Atrial anatomy with non-fibrotic 

(grey) and fibrotic (black) regions, and the five 

stimulation sites.  

 

3. Results 

3.1.  Fibrotic substrate modeling 

Figure 3A shows voltage maps comparing the IA+IR 

fibrotic model under two different diffusion settings: 

healthy diffusion (100%) and reduced diffusion (25%) 

within fibrotic regions. Whereas considering original 

diffusion (100%) the wave propagation is not affected by 

the fibrosis presence, lower diffusion values (25%) 

exhibits conduction discontinuities and wave-breaks, 

which are known precursors to reentrant activity and AF 

initiation. Conduction velocity maps (Figure 3B) 

highlight that the 25% diffusion case yields longitudinal 

CV values in agreement with previous experimental data 

(20 cm/s) [4], supporting the physiological relevance of 

this parameter choice. Additional simulations in two 

representative geometries (Figure 3C–D) demonstrate that 

in the absence of diffusion downscaling, no arrhythmic 

activity could be initiated. 

Figure 3. (A) Transmembrane voltage (TV) maps and (B) 

conduction velocity (CV) maps comparing the IA+IR 

model with 100% diffusion (left) versus 25% diffusion 

(right). Arrhythmic versus non-arrhythmic outcomes for 

two different virtual patient shown in (C) and (D) under 

different stimulus location using the IA+IR model with 

varying diffusion levels in fibrotic areas.  

 

3.2.  Arrhythmic vulnerability 

The results of our arrhythmic vulnerability analysis, 

through the whole database, are summarized in Figure 4. 

Panel (A) displays the percentage of arrhythmic cases 

based on the model of fibrosis used. When fibrosis is not 

integrated, 22±32 % of arrhythmic cases are observed. 

The decoupling model shows the highest vulnerability, 

with 60±30% of cases, followed by the D+IR model, 

which reaches 46±33% and the IA+IR model with 26 ± 

25%. 

Panel (B) presents the percentage of arrhythmic cases 

according to the stimulus location. LA sites were 

generally more arrhythmogenic, with the region between 

the right pulmonary veins (RPVs) showing the highest 

vulnerability at 67% on average. Overall, LA stimulation 

led to arrhythmia in 48% of cases, compared to 24% for 

RA sites. 

Finally, across all locations and models, arrhythmias 

were induced in 37.7 ± 22.2% of cases, highlighting 

notable variability across models and patients. 

Nonetheless, the D and D+IR models consistently showed 

higher arrhythmic vulnerability. 



 
Figure 4. (A) Percentage of arrhythmic cases depending 

on the type of model used. (B) Mean percentage of 

arrhythmic cases depending on the stimulus location. 

4. Discussion and Conclusions 

In this study, we developed a fast and biologically 

informed algorithm to generate fibrotic patterns aligned 

with myocardial fiber directions. Combined with the 

integration of TGF-β1 effects into the Koivumäki model, 

this allowed us to simulate both structural and 

electrophysiological remodeling with realistic biomarker 

output [4]. We conducted 200 simulations across four 

fibrosis definitions (no fibrosis, D, D+IR, IA+IR) to 

assess their impact on arrhythmia vulnerability. Without 

fibrosis, only 22% of cases resulted in arrhythmia, 

highlighting the essential role of fibrotic remodeling. This 

level of inducibility is expected, as the baseline model 

includes a PsAF degree of electrical remodeling. 

The D model showed the highest inducibility (~60%) 

but likely overestimates arrhythmic risk due to excessive 

node disconnection. The IA+IR model required diffusion 

tuning to sustain reentry, highlighting sensitivity to 

solver, mesh, or cell model. This limits reproducibility 

across frameworks. In contrast, the D+IR model [5] 

yielded realistic arrhythmia rates without parameter 

tuning, offering more physiologically consistent results. 

We also found that left atrial pacing was significantly 

more arrhythmogenic than right atrial, especially near the 

right pulmonary veins (67% inducibility), in accordance 

with the higher fibrosis infiltration in LA respect to RA.   

We plan to expand this study with a larger virtual 

cohort, more Utah fibrosis stages, and additional pacing 

sites. Future work will also explore how variations in 

fibrosis parameters (grDir, grAle) affect pattern 

formation, potentially capturing greater patient-specific 

heterogeneity. This will strengthen the robustness and 

personalization of arrhythmia risk assessment. 

 

Acknowledgments 

This work was funded by Generalitat Valenciana Grant 

AICO/2021/318 (Consolidables 2021), Grants PID2020-

114291RB-I00, PID2023-148702OB-I00 and EraNet 

PCI2024-153442 funded by MCIN/ 

10.13039/501100011033 and by “ERDF A way of 

making Europe”. 

 

References 

[1] G. Lippi et al., “Global epidemiology of atrial fibrillation: an 

in-creasing epidemic and public health challenge,” 

International journal of stroke, vol. 16, no. 2, pp. 217-221, 

2021. 

[2] S. A. Niederer et al., “Creation and application of virtual 

patient cohorts of heart models,” Philosophical 

Transactions of the Royal Society A, vol. 378, no. 2173, 

2020. 

[3] B. Burstein et al., “Atrial fibrosis: mechanisms and clinical 

relevance in atrial fibrillation,” Journal of the American 

College of Cardiology, no. 51, vol. 8, pp. 802-809, 2008. 

[4] J. B. Hakim et al., “Arrhythmia dynamics in computational 

models of the atria following virtual ablation of re-entrant 

drivers,” EP Europace, vol. 20, no. suppl_3, pp. iii45-iii54, 

2018. 

[5] P. Martinez Díaz et al., “The right atrium affects in silico 

arrhythmia vulnerability in both atria,” Heart Rhythm, 

vol. 21, no. 6, pp. 799-805, 2024. 

[6] C. Nagel et al., “A Bi-atrial Statistical Shape Model and 100 

Volumetric Anatomical Models of the Atria [Data set],” 

Zenodo. https://doi.org/10.5281/zenodo.5004620, 2021. 

[7] C. H. Roney et al., “Modelling methodology of atrial fibrosis 

affects rotor dynamics and electrograms. EP Europace, 

vol. 18, no. suppl_4, pp. iv146-iv155, 2016. 

[8] N. Akoum et al., “Atrial fibrosis quantified using late 

gadolinium enhancement MRI is associated with sinus node 

dysfunction requiring pacemaker implant,” Journal of 

cardiovascular electrophysiology, vol. 23, no. 1, pp. 44-50, 

2012. 

[9] J. T. Koivumäki et al., “In silico screening of the key cel-

lular remodeling targets in chronic atrial fibrillation,” PLoS 

Computational Biology, vol. 10, no. 5, 2014. 

[10] V. García-Mollá et al., “Adaptive step ODE algorithms for 

the 3D simulation of electric heart activity with graphics 

processing units,” Computers in biology and medicine, vol. 

44, pp. 15-26, 2014. 

[11] G. S. Romitti et al., “Implementation of a Cellular 

Automaton for efficient simulations of atrial 

arrhythmias,” Medical Image Analysis, pp. 103484, 2025. 

[12] P. M. Boyle et al., “Characterizing the arrhythmogenic 

substrate in personalized models of atrial fibrillation: 

sensitivity to mesh resolution and pacing protocol in AF 

models,” EP Europace, vol. 23, no. suppl_1, pp. i3-i11, 

2021. 

 

Address for correspondence: 

 

Miguel Rodrigo Bort  

Av. de l’Universitat, s/n. 46100, Burjassot (Valencia, Spain). 

miguel.rodrigo@uv.es 

https://doi.org/10.5281/zenodo.5004620

