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Abstract

Team KHU BME developed a machine learning (ML)
model for early detection of Chagas disease using large-
scale 12-lead ECG data. Chagas disease, caused by
Trypanosoma cruzi, is often underdiagnosed in endemic
regions where molecular or serological testing is limited.
ECG offers a low-cost, non-invasive alternative that can
capture conduction abnormalities of chronic Chagas
cardiomyopathy.

From an initial 109 features, morphological, temporal,
and spectral descriptors were extracted and reduced to 44

clinically relevant features, such as QRS duration and rsR'

patterns. This feature reduction improved generalizability,
efficiency, and interpretability. Class imbalance was
addressed with SMOTE, and hyperparameters were tuned
for Random Forest, XGBoost, and Logistic Regression
classifiers.

The ensemble model achieved a Challenge score of
0.139, AUROC 0.817, AUPRC 0.718, Accuracy 0.746,
and F-measure 0.645 on our held-out test set, and a
Challenge score of 0.094 on the official test set. These
results demonstrate the feasibility of ECG-based ML with
feature reduction as an efficient screening tool for
Chagas disease in resource-limited settings.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi, remains
prevalent in Latin America, with many patients
progressing to chronic stages without timely diagnosis.
Chronic Chagas cardiomyopathy is a major cause of heart
failure, arrhythmias, and sudden cardiac death,
highlighting the need for early detection. Definitive
serological or molecular tests are costly and
infrastructure-dependent, limiting use in resource-limited
settings, whereas electrocardiography (ECG) is a low-cost,
non-invasive tool for detecting conduction abnormalities.
Here, we developed a machine learning model using
large-scale 12-lead ECG data, extracting morphological
and spectral features, optimizing hyperparameters, and
proposing an ensemble classifier. Comparative analyses
with baselines demonstrated the feasibility of ECG-based
ML as a scalable screening strategy.

Chagas disease, caused by Trypanosoma cruzi, remains
a major endemic condition in Latin America. The
infection often progresses silently, but once chronic
cardiomyopathy develops, it leads to heart failure,
arrhythmias, and sudden death, driving most of the
disease’s morbidity and mortality.

1.2. Limitations of current

approaches

diagnostic

Definitive diagnosis depends on serology or PCR,
which are accurate but costly and infrastructure-
dependent, limiting early large-scale screening in
endemic low-resource areas and contributing to delayed
detection and poor outcomes.

1.3. Motivation for ECG-based machine
learning

Electrocardiography (ECG) is a non-invasive,
inexpensive, and widely available tool capable of
detecting conduction abnormalities characteristic of
Chagas cardiomyopathy, making it well-suited for early
screening in endemic regions. Recent advances in
machine learning enable automated recognition of
disease-specific morphological and spectral ECG patterns;
however, high-dimensional feature sets in imbalanced
datasets risk overfitting and poor generalizability. To
address this, we implemented feature reduction, retaining
clinically meaningful and statistically robust descriptors
while eliminating redundancy, thereby improving
computational efficiency, enhancing interpretability, and
aligning the model with established pathophysiology.

2. Methods

We developed a machine learning—based diagnostic
model for early detection of Chagas disease using large-
scale 12-lead ECG datasets (CODE-15 and SaMi-Trop).
Morphological and spectral features were extracted,
multiple  algorithms ~ were  benchmarked,  and



hyperparameters optimized(details of the optimization
methods will be further discussed in Section 2.8). An
ensemble strategy was employed, yielding superior
performance compared to individual models.

2.1. Data sources

Two datasets were used: CODE-15, comprising a
heterogeneous population with diverse cardiovascular
conditions, and SaMi-Trop, containing exclusively
Chagas-positive cases to address class imbalance.
Records were included only if headers and signals were
valid; corrupted channels or ambiguous labels were
excluded.

2.2.  Preprocessing

All ECGs were resampled to 400 Hz and bandpass
filtered (0.5-40 Hz) to suppress baseline drift, muscle
noise, and powerline interference. Signals were
normalized per lead to minimize inter-patient amplitude
variability and ensure robust feature extraction.

2.3. Feature extraction

We extracted 109 ECG features spanning HRV,
morphology, axis, spectral, and statistical measures, as
summarized in Table 1, and applied importance-based

pruning to retain only the most informative variables.

Table 1. Extracted ECG features grouped by category.

Group Number
of features
HRV (Heart Rate Variability) 7
Morphological 10
Axis 3
PSD (Power Spectral Density) 48
Spectral 9
ZCR (Zero-Crossing Rate) 8

EVM(Energy/Variance/Median 24
Absolute Deviation(MAD))
Total 109

2.4. Feature reduction

To reduce overfitting and enhance generalizability, we
applied a systematic feature reduction pipeline. Starting
from 109 features, permutation analysis and model-based
importance ranking with Random Forest, XGBoost, and
Logistic Regression guided the elimination of low-
importance and redundant variables. The final 44-feature
set preserved clinically meaningful descriptors, including
QRS duration and rsR’ morphology, thereby improving

dimensionality, computational efficiency, and
interpretability without loss of performance.

2.5. Model development

Three base classifiers were constructed: Random
Forest (RF), Extreme Gradient Boosting (XGB), and
Logistic Regression (LR). Each model was trained on the
reduced feature set, and their probability outputs were
combined via weighted averaging, leveraging the
complementary advantages of tree-based and linear
models.

2.6. Training protocol

Model training employed stratified k-fold cross-
validation to ensure balanced representation of positive
and negative cases across folds. Hyperparameter
optimization was performed for each classifier, and
oversampling with SMOTE was applied to address
residual class imbalance. This protocol maximized
robustness and reproducibility while mitigating bias from
data heterogeneity.

2.7. Evaluation metrics

Performance was assessed using the official Challenge
metrics: Challenge score (primary), AUROC, AUPRC,
Accuracy, and F1. Cross-validation results were reported
as mean £+ SD, and final evaluation on the held-out and
official test sets determined leaderboard ranking.

2.8. Hyperparameter optimization

Hyperparameters were optimized via grid search with
F1 as objective. Only non-default values are reported in
Table 2, as they consistently improved cross-validation
performance.

Table 2. Final optimized hyperparameters: Random
Forest used 800 trees with constrained depth for stability,
XGBoost applied a low learning rate and class imbalance
correction for rare positives, and Logistic Regression with
2000 iterations ensured a stable baseline.

Model Parameter Value
Random Forest n_estimators 800
(RF) max_depth 12
min_samples_split 10

min_samples leaf 4

XGBoost n_estimators 400
(XGB) learning_rate 0.05

max_depth 6

colsample bytree 0.6

reg lambda 0.5



scale_pos_weight neg/pos

ratio
Logist@c C 10.0
Regression )
(LR) max_iter 2000
3. Result

Detailed performance metrics for the ensemble model
under different evaluation protocols (cross-validation,
validation, internal held-out test, and official Challenge
test) are collectively presented in Table 3.

3.1.  Cross-validation results (CV)

In 10-fold cross-validation on the training set, the
ensemble achieved a Challenge score of 0.1285 = 0.0062,
AUROC of 0.8211 + 0.0134, AUPRC of 0.7010 + 0.0214,
Accuracy of 0.7254 + 0.0134, and F-measure of 0.6595 +
0.0164.

3.2.  Validation results (V)

On the validation subset, the ensemble achieved a
Challenge score of 0.139, AUROC of 0.817, AUPRC of
0.718, Accuracy of 0.746, and F-measure of 0.645.

3.3. Internal validation (IV)

Evaluation on an internal held-out subset of the
training data yielded slightly higher performance, with a
Challenge score of 0.139, AUROC of 0.830, AUPRC of
0.732, Accuracy of 0.755, and F-measure of 0.656. These
results were consistent with the cross-validation and
validation subsets, indicating stable generalization.

3.4. Official Challenge score (CS)
On the official hidden test set, our submission achieved

a Challenge score of 0.094, which determined our final
leaderboard ranking.

Table 3. Performance results across different
evaluation subsets. (Abbreviations: CS = Challenge score;
ACC = Accuracy; F1 = F-measure.)

set CS AUROC AUPRC ACC Fl
cv 0.1285+  0.8211x  0.7010+  0.7254+  0.6595+

0.0062 0.0134 0.0214 0.0134 0.0164
v 0.139 0.817 0.718 0.746 0.645
v 0.139 0.830 0.732 0.755 0.656
CS 0.094 - - - -

3.5. Feature importance and ROC analysis

Figure 1. Normalized feature importance identified
SDNN and QRS duration in lead V2 as the top predictors,
followed by axis, ST/T, and spectral features. These
reflect key pathophysiological patterns of Chagas
cardiomyopathy, including reduced HRV, conduction
delay, and repolarization abnormalities.

Figure 2. The out-of-fold ROC curve yielded
AUROC=0.8209, indicating robust discrimination with
high sensitivity at low false positive rates, suitable for
screening use.
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4. Discussion

4.1. Interpretation of key findings

The feature importance analysis demonstrated that
HRV (e.g., SDNN) and QRS duration in V2 were the
most influential predictors. rsR’ in right precordial leads,
axis deviation, and ST/T abnormalities also ranked highly,
corroborating known conduction and repolarization
changes in chronic Chagas disease. These findings
highlight recognized ECG hallmarks of Chagas disease,
supporting the model’s pathophysiological plausibility.

The out-of-fold AUROC was 0.8209, showing strong
discrimination with sensitivity at low false positive rates.
This suggests the model identifies physiologically
meaningful features while achieving robust accuracy for
screening in imbalanced populations.

4.2. Advantages of feature reduction

By discarding redundant or noisy variables, the model
achieved improved stability and generalizability
compared to the full feature set.

4.3. Limitations

The primary limitation of this study lies in the class
imbalance and potential sampling bias across datasets.
Although SMOTE was applied, oversampling may
introduce synthetic artifacts. Additionally, the external
generalizability to non-Brazilian or non-Latin American
populations remains untested.

4.4. Future work

Future directions include the integration of deep
learning approaches to capture raw waveform
representations, external validation on independent
cohorts, and deployment in real-world clinical screening
scenarios. Combining lightweight ML with embedded
hardware could further support point-of-care applications.
Moreover, we aim to explore novel physiological
correlations that may enable ECG-based screening of
early-stage Chagas patients, reflecting our commitment as
biomedical engineering students to move beyond code
optimization and engage with the fundamental challenges
of Chagas disease.

5. Conclusion

We proposed a machine learning—based ECG model
for the early detection of Chagas disease, with feature
reduction as the central contribution. The ensemble
classifier achieved competitive performance on both

cross-validation and the official Challenge test set.
Findings support ECG-based feature reduction as an
effective screening tool in resource-limited settings.
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