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Abstract

Chagas disease affects nearly 6 million people world-
wide, with Chagas cardiomyopathy representing its most
severe complication. In regions where serological test-
ing capacity is limited, Al-enhanced electrocardiogram
(ECG) screening provides a critical diagnostic alterna-
tive. However, existing machine learning approaches face
challenges such as limited accuracy, poor interpretability,
reliance on large labeled datasets, and more importantly,
weak integration with evidence-based clinical diagnostic
indicators.

We propose a retrieval-augmented generation frame-
work, CardioRAG, integrating large language models with
interpretable ECG-based clinical features, including right
bundle branch block, left anterior fascicular block, and
heart rate variability metrics. The framework uses vari-
ational autoencoder-learned representations for semantic
case retrieval, providing contextual cases to guide clini-
cal reasoning. Evaluation demonstrated high recall per-
formance of 89.80%, with a maximum FI score of 0.68
for effective identification of positive cases requiring pri-
oritized serological testing. CardioRAG provides an in-
terpretable, clinical evidence-based approach particularly
valuable for resource-limited settings, demonstrating a
pathway for embedding clinical indicators into trustwor-
thy medical Al systems.

1. Introduction

Chagas disease is a neglected tropical disease caused
by Trypanosoma cruzi, affecting approximately 6 million
people worldwide, with fewer than 10% aware of their in-
fection status [1]. The disease can progress to Chagas car-
diomyopathy (ChCM), where electrocardiographic abnor-
malities often precede overt structural heart disease [2].
ECG provides a pragmatic, low-cost tool for early risk
stratification in resource-limited settings, enabling priori-

tized serological testing and more efficient resource allo-
cation [3].

In recent years, modern data-driven approaches have
enabled new paradigms for Chagas detection. Advanced
machine-learning methods can model non-linear relation-
ships between disease status and multivariate ECG signals
[4,5]. However, current methods exhibit persistent lim-
itations: (i) performance instability across domains due
to population shift and limited calibration [6], (ii) limited
clinical interpretability hindering trust and adoption [7],
and (iii) dependence on large, well-curated labeled datasets
that are scarce for neglected diseases.

To address these challenges, we introduce CardioRAG,
a novel multimodal retrieval-augmented generation (RAG)
framework [8] integrating interpretable ECG clinical fea-
tures with large language model-based diagnostic reason-
ing. Our approach targets the critical screening scenario
where high recall is essential for identifying potential Cha-
gas cases for prioritized serological testing.

This work makes three key contributions: (1) A
clinically-grounded RAG pipeline combining established
ECG biomarkers (RBBB, LAFB) with heart rate vari-
ability metrics, achieving consistent high recall perfor-
mance (>85%) across different model configurations. (2)
A VAE-based representation learning system coupled with
demographic-aware case retrieval, enabling effective sim-
ilarity matching with limited training data. (3) Empiri-
cal demonstration that prompt simplification and balanced
case retrieval optimize performance for smaller language
models, achieving 58.59% accuracy and 87.76% recall in
zero-shot learning.

2. Methodology

We propose a comprehensive framework for auto-
mated Chagas disease detection that integrates deep
learning-based ECG representation learning with retrieval-
augmented generation (RAG) [9] for enhanced diagnostic
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Figure 1: The CardioRAG Framework for Chagas disease diagnosis from 12-lead ECG signals. The system preprocesses
raw ECG data, extracts clinical and latent features via VAE, retrieves relevant cases from a RAG database, and generates
structured diagnoses with confidence scores using a large language model.

reasoning. As shown in Figure 1, the system processes 12-
lead ECG alongside patient demographic data (age, sex)
recordings through three main stages: (1) extraction of
clinical features from ECG signals, (2) VAE-based rep-
resentation learning for semantic similarity [10], and (3)
RAG-enhanced diagnostic decision making with large lan-
guage models (LLMs).

2.1. Data sources and preprocessing

This study utilized three publicly available ECG datasets
from the PhysioNet Challenge [11]. The SaMi-Trop
dataset [12] (1,631 records, 400 Hz) contains validated
positive cases from Brazil with serologically confirmed
Chagas disease. The PTB-XL dataset [13] (21,799 records,
500 Hz) serves as negative controls from European pa-
tients in non-endemic regions. The CODE-15% dataset
[14] (300,000+ records, 400 Hz) provides mixed labels
from Brazilian patients with self-reported Chagas status.

All ECG signals underwent standardized pre-processing:
(1) resampling recordings to 400 Hz using linear inter-
polation, (2) standardizing signal durations to 7 seconds
through cropping or padding, and (3) filtering using the
NeuroKit2 toolbox [15] for noise removal and baseline
correction.

2.2.  Chagas-specific feature engineering
Chagas disease and ChCM manifest as specific ECG
abnormalities, particularly conduction and rhythm disor-
ders [16]. For conduction disorders, we implemented au-
tomated detection of right bundle branch block (RBBB)
and left anterior fascicular block (LAFB) using Minnesota
Code criteria [17]. RBBB and LAFB represent key ChCM
manifestations, with prevalence rates of 34-40% and 23-
39% respectively in ChCM patients [2]. Table 1 outlines
the specific ECG parameters required for automated detec-

tion.
Table 1: ECG parameters of conduction disorders
Feature Target Leads Required ECG Parameters
QRS duration, R wave duration, R peak
REBB L IL III, aVL duration, R wave amplitude, R’ wave
aVF, V1, V2 amplitude, S wave duration, S wave am-
plitude, net QRS deflection
1, 1L, 111, aVL QRS duration, Q wave duration, Q wave
LAFB e . .
aVF amplitude, QRS axis angle

For rhythm assessment, RR-derived metrics were ex-
tracted from lead V5, including ventricular rate and
RMSSD (root mean square of successive differences).
RMSSD serves as a short-term heart rate variability index,
with reduced values significantly associated with Chagas
disease [18]. These features, combined with demographic
information (age and sex), form the comprehensive multi-
modal input to the RAG diagnostic system.

2.3. CardioRAG diagnostic architecture

The RAG framework addresses the fundamental chal-
lenge of labeled data scarcity in Chagas disease detection
by enabling case-based reasoning via retrieval of similar
historical cases. This diagnostic approach aligns with clin-
ical practice, in which physicians rely on prior cases to
guide complex diagnostic decisions. [8,9].

Variational autoencoder for signal embedding. We
employ a variational autoencoder (VAE) architecture [10]
to learn compact ECG representations that support effec-
tive similarity search. The encoder consists of four resid-
ual blocks [19] with progressively increasing channels (32,
64, 128, 256). Each residual block contains two 1D con-
volutions with Batch Normalization, ReLU and a skip con-
nection. The encoder outputs (1) and log-variance (log o'2)
parameters of a 256-dimensional latent distribution. Train-
ing employs the standard VAE objective:

L= Lrecon + 5 . LKL (])



where Lrecon = Ey, (2a) [log pp(x|z)] is the reconstruction
loss, Lxi, = Dki(g4(z|z)||p(2)) is the KL divergence reg-
ularization term, and [ is set to 0.1 based on validation
performance.

Case retrieval mechanism. The retrieval process im-
plements a two-stage search strategy combining VAE-
based similarity with demographic filtering. Similarity
search begins in the VAE latent space using cosine simi-
larity to identify the k most similar cases (with k tuned on
validation data). The secondary filtering computes a com-
posite similarity score:

Scomposite = SVAE + Wage * Sage (2)

where Syag is normalized VAE similarity, Sy, reflects age
similarity using a Gaussian kernel with 0 = 10 years, and
Wage 18 the weighting coefficient. Retrieved cases are for-
matted into structured context for the LLM, including pa-
tient demographics, detected clinical features, HRV met-
rics, and diagnostic labels, with length control to avoid
prompt overflow.

LLM powered diagnostic reasoning. The LLM re-
ceives structured prompts containing patient features and
retrieved similar cases, generating diagnostic predictions
with confidence scores and clinical reasoning. The LLM
output follows a structured JSON format containing: (1)
binary diagnosis (POSITIVE/NEGATIVE), (2) confidence
percentage, (3) detailed clinical reasoning, (4) identified
diagnostic indicators, (5) relevant risk factors, and (6)
other cardiac findings. For example, a positive case gener-
ated the following clinical reasoning.

The patient presents with RBBB _satisfaction indicating a right
bundle branch block, which is consistent with Chagas. The low
RMSSD in Lead V6 (7.8 ms) strongly suggests a heart rhythm
abnormality indicative of Chagas. No other significant ECG
findings are noted, and the data supports a clear positive diag-
nosis.

3. Results and analysis

Our CardioRAG framework could not be evaluated us-
ing the standard PhysioNet Challenge 2025 methodology
due to technical constraints: the local storage limit pro-
hibits inclusion of large language models or API connec-
tivity required for our system. Additionally, our zero-shot
learning paradigm fundamentally differs from the Chal-
lenge’s supervised training approach.

Therefore, we evaluated the proposed framework using
the DeepSeek-R1:1.5b language model [20] on a test set
of 100 patients, consisting of 50 consecutive positive cases
from the SaMi-Trop dataset and 50 consecutive negative
controls from the PTB-XL dataset. Our experiments fo-
cused on two critical aspects: the impact of prompt engi-

neering, and the effect of RAG retrieval strategies on diag-
nostic performance.

3.1. Prompt engineering
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Figure 2 presents the performance comparison across
four prompt configurations. Counterintuitively, the P2
Simplified Clinical” configuration achieved the best per-
formance with 58.59% accuracy, 87.76% recall, and
67.72% F1 score, representing significant improvements
over the “P1 Detailed Baseline” (52.53% accuracy,
85.71% recall, 64.12% F1). This 6.06 percentage point
accuracy improvement suggests that for smaller language
models, concise prompts focusing on key decision factors
outperform exhaustive clinical descriptions with detailed
RBBB/LAFB detection criteria.

Notably, adding cautionary instructions ("P4 Conserva-
tive”) decreased performance to 54.55% accuracy, indicat-
ing that overly conservative prompting may bias the model
toward indecision. The optimal configuration maintained
essential clinical context while avoiding information over-
load. In the annalysis, one case could not produce a valid
structured output from the language model and was there-
fore excluded from the subsequent evaluation.

3.2.  Retrieval strategies

Table 2 demonstrates the impact of retrieval augmen-
tation on diagnostic performance. The relationship be-
tween the number of retrieved cases (k) and accuracy fol-
lows an inverted U-shape, with optimal performance at
k=8 (58.59% accuracy). The baseline prompt (P1) without
RAG achieved a markedly low recall of 48.98%, which is
significantly lower than all configurations with RAG. This
demonstrated that RAG effectively enhanced the LLM’s
diagnostic performance.

The performance degradation observed at k=16 (52.53%
accuracy) may be attributed to the introduction of exces-



Table 2: Comparison of retrieval configurations

Configuration Accuracy% Recall% F1 Score
P1 No RAG 54.55 48.98 0.52
P1 RAG k=8 52.53 85.71 0.64
P2 RAG k=8 58.59 87.76 0.68
P2 RAG k=8 (bal) 58.59 89.80 0.68
P2 RAG k=16 52.53 77.55 0.62

sive retrieved cases, which likely added noise rather than
providing useful diagnostic context and potentially over-
whelmed the LLM’s reasoning capacity. In contrast, the
balanced retrieval strategy at k=8 achieved the highest re-
call and F1 score, suggesting the importance of maintain-
ing an appropriate proportion of representative positive
and negative examples within the retrieval set.

These findings suggest alignment with our prompt en-
gineering results, indicating that both prompt quality and
RAG quantity may significantly influence LLM diagnostic
performance. Our results show that neither maximal in-
formation provision nor extreme simplification yields op-
timal performance. Instead, balanced, focused contextual
guidance appears to achieve the best diagnostic reasoning
outcomes without cognitive overload.

4. Conclusion

Our CardioRAG framework demonstrates the potential
of integrating retrieval-augmented generation with clini-
cal ECG features for Chagas disease screening, achiev-
ing 58.59% accuracy and 87.76% recall with consistently
high recall across configurations. Our evaluation reveals
that simplified prompts outperformed detailed descrip-
tions; moderate case retrieval (k=8) with balanced retrieval
achieved optimal performance; and the 58-59% accuracy
ceiling may reflect current model limitations, warranting
evaluation of larger LLMs. The framework’s high recall
performance makes it valuable for initial screening and pa-
tient triaging for serological testing, with future work fo-
cusing on improving specificity through enhanced feature
selection and RAG optimization.
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