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Abstract

We present ElectroDoChagas’s team contribution to the
As part of the George B. Moody PhysioNet Challenge
2025 challenge to detect Chagas disease on 12-lead elec-
trocardiogram (ECG) signals. We focused on mitigat-
ing database, age, and sex-dependence biases by creat-
ing an ensemble model trained on data subsets where
these features were stratified. This stratification was also
performed for validation and local holdout-test splitting.
The model was a deep Residual Network (ResNet) with
8 residual blocks enhanced with Convolutional Block At-
tention Modules (CBAM). While CBAM applied lead and
time attention mechanisms, residual connections allowed
a deeper model and more complex feature extraction. We
explored the performance of a single model trained on the
full database (model 1), an ensemble model composed of 3
ResNets trained on 3 different subsets, repectively (model
2), and a combination of 2 ensemble models trained each
on one age group, setting 60-years-old as threshold for
group sub-division (model 3). Model 1 obtained a chal-
lenge score (CS) of 0.361 on local test and 0.351 on the
hidden validation set. Model 2 and 3 obtained a local test
CS of 0.412 and 0.406, respectively. Given the challenge
computational constrains, we could not obtain a validation
score for all models.

1. Introduction

In this paper we present our contribution to the 2025
George B. Moody PhysioNet Challenge, which consisted
on developing algorithms to detect Chagas disease from
12-lead electrocardiograms (ECG) [1,2]. We proposed an
ensemble of Residual Network (ResNet) models enhanced
with Convolutional Block Attention Modules (CBAM) at-
tention mechanisms to detect Chagas disease from 12-
lead ECG recordings. We specifically evaluate the impact
of age, sex, and database heterogeneity on model perfor-
mance, aiming to develop a diagnostic tool that is not only
accurate, but also generalizable across diverse populations.

2. Methodology

Three databases were provided by the challenge orga-
nizers [3-7]. We designed a pipeline that combined data
preparation, a bias-aware splitting strategy, and a deep
learning (DL) architecture tailored to imbalanced and het-
erogeneous datasets trained under a composite loss func-
tion designed to improve sensitivity in positive cases. We
presented 3 different models with a shared core DL archi-
tecture trained on different data shares.

2.1. Data Preparation

2.1.1. Preprocessing

Signals were resampled to 400 Hz and filtered with a
zero-phase band-pass filter between 0.1 Hz and 50 Hz to
remove high-frequency noise and slow drifts while pre-
serving clinically relevant frequency components. Base-
line wander was corrected by spline-based detrending,
which adaptively estimated and subtracted low-frequency
fluctuations. Finally, signals were standardized and either
zero-padded or truncated to 3000 samples to ensure uni-
form input length for the DL architecture.

2.1.2. Augmentation

To increase robustness against acquisition variability
and prevent overfitting, data augmentation was performed.
It included the addition of Gaussian noise, random lead
inversion, and permutation, each applied with probabili-
ties between 0.02 and 0.06. As the positive class (Chagas-
labeled ECGs) was underrepresented (379,794 negative vs.
7,374 positive), oversampling was performed replicating
by three-fold positive cases.



2.2. Model

2.2.1. Architecture

The proposed model was a deep ResNet architecture
with CBAM attention mechanism as described in [8].
Residual connections allowed the training of a deeper net-
work without suffering from vanishing gradient problems,
thereby enabling the extraction of complex hierarchical
features. It was composed of 8 residual blocks, each con-
taining an identity and a convolutional block as described
in Figure 1. The 1D convolutional layers had a kernel size
of 15 at outer and 7 at deeper layers with L2 regularization
and 64 filters that doubled every 2 blocks, enhancing the
model’s ability to capture both low- and high-level tempo-
ral features from input signals. A dropout layer of 0.3 was
added at each residual block.

As described in Figure 2, CBAM modules were inte-
grated into residual blocks. They sequentially apply chan-
nel and spatial attention mechanisms, which adaptively re-
calibrate feature maps by emphasizing informative leads
and time segments while suppressing irrelevant informa-
tion. The final layers included global feature aggregation
followed by a fully connected layer with sigmoid activa-
tion to output class probabilities.

The architecture was designed to balance depth, robust-
ness, and clinical utility, providing a reliable framework
across diverse populations. A single instance of the de-
scribed model will be referred as model 1.

2.2.2. Training

For local training and test we performed a data splitting
for 25% validation, 20% local holdout-test set. To miti-
gate the age, sex and database biases, they were stratified
during every data split together with the target label. To
address class imbalance, model training employed a com-
posite loss function that combined focal loss [9] with a dif-
ferentiable surrogate of the true positive rate as described
in equation 1.

L = Lioca — Apr TPRY" (1

Where Lgocq addressed class imbalance focusing on
hard examples and TPR*" p encouraged the model to rank
positive cases within the top-p N predictions of each batch.
The parameter Ay, controlled the strength of the TPR sur-
rogate term. This encouraged the network not only to han-
dle imbalanced distributions but also to directly optimize
for recall of positive cases.

2.3. Ensembles

To further mitigate the underepresentation of chagas
positive patients without dismissing data, we divided
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Figure 1. Residual block ResNet architecture, including a
concatenation of and identity and convolutional block.

the chagas-negative class into 3 subsets, maintaining the
database, sex and age stratification. Each subset was paired
with the full number of chagas-positive signals. Each of
the resulting subsets was used to train independently a sin-
gle ResNet model. Independent models were combined
into an ensemble through a major voting of their final pre-
diction. The ensemble model as described in Figure 3 and
it is referred to as model 2 throughout the text. Neverthe-
less, a more complex composition was explored (model 3).
Model 3 combined two ensemble models (x2 model 2) em-
phasizing an age-distinction. A 60-year-old threshold was
set to divide the data set. Then each of the age groups was
used to train a different ensemble as described above. The
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Figure 2. CBAM attention module implemented in
ResNet block. (A) Channel attention module (B) Spatial
attention module.

output prediction for each record was given by the ensem-
ble model corresponding to the age-group of the patient.

3. Results

Table 1 summarizes the performance obtained by the
different models proposed: 1 a single ResNet, 2 an ensem-
ble formed by 3 ResNets and 3 a combination of 2 ensem-
bles each trained for an age group. Unfortunately, due to
computational time constrains, no score was provided by
the challenge organizers for more than 10 training epochs,
which led to an under-training of the models.

Local Test Hidden Val.
Model — Epochs 10 e 65 | €S Ranking
1 10 0.243 0.361 | 0.351 46/371
2 50 0.249 0412 - -
3 10 - - 0.345  53/371
3 30 0.256 0.406 - -

Table 1. Performance of proposed models. CS stands for
challenge score, and val. for validation.

4. Discussion

Chagas disease detection on the ECG entails major chal-
lenges. Its effects are multiple, encompassing both struc-
tural and functional alterations that manifest as a wide
spectrum of abnormalities. Furthermore, the provided

databases entailed some challenges too as they were im-
balanced both at the database and class level. All hard-
labeled Chagas cases originated from a single database,
so database-stratified splitting was implemented to prevent
models from exploiting source-specific artifacts. At the
class level, positive (Chagas) cases were substantially un-
derrepresented; this was addressed by oversampling posi-
tives within each training subset to balance class distribu-
tions and by assigning class weights. In addition, multiple
ResNet—-CBAM models trained on different stratified sub-
sets were combined into a major-voting ensemble, which
reduced variance and improved generalization. Training
employed a composite loss that integrated focal loss with a
surrogate of the true positive rate, encouraging the model
to prioritize recall in Chagas-positive cases. Nevertheless,
computational constraints limited the number of full en-
semble configurations that could be trained and submitted
during the official challenge phase, restricting the explo-
ration of more extensive architectures. Despite these lim-
itations, the final submission achieved a close alignment
between local validation scores and the official hidden test
score, indicating that our bias-aware stratification and val-
idation pipeline provided a good estimation of the CS and
a reliable evaluation framework We proposed 3 models of
increasing complexity, whose performance is gathered in
Table 1. The rationale behind the age division in model
3 was that, as patients age, the myocardium accumulates
fibrosis and possibly other pathologies thus, making one
age group more prone to suffer from other co-morbidities
coexisting with chagas disease, making its diagnosis more
challenging. The 60-age threshold was set to guarantee the
availability of enough hard labels for both groups. Never-
theless, a better cut would have divided young, middle-
age and senior populations. Comparison among the 3 sug-
gested models is not trivial as, given the computational
constrains we were not able to obtain a successful eval-
uation of our models for enough epochs. However, based
on local evaluation, model 2 seemed to achieve the high-
est performance. The division made by model 3 did not
lead to better performance possibly because the 60-year
old threshold was not optimal, as it combined young and
middle-age subjects. Should more data be available, a bet-
ter age division could be explored by creating an indepen-
dent young group.

Computational power availability was a bottleneck in
our submission process, to mitigate this effect we could
have performed an aggressive undersampling of the ma-
jority class or a simplification of the ResNet model by de-
creasing the number of residual blocks.

5. Conclusion

In this work we present an ensemble of ResNet models
enhanced with CBAM attention modules for the detection
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Figure 3. Ensemble model (model 2) integrating 3 ResNet
networks through a major voting strategy.

of Chagas disease from 12-lead ECG recordings. Our ap-
proach explicitly incorporated age, sex, and database het-
erogeneity into both the training strategy and evaluation
protocol, addressing key sources of bias that often limit
the generalizability of Al solutions in cardiology. The
proposed method demonstrated competitive performance
while maintaining robustness across diverse populations.
These findings underscore the importance of demographic
stratification and bias-aware design when building diag-
nostic tools for neglected diseases such as Chagas. Beyond
improving classification accuracy, our approach highlights
a framework for developing Al models that are clinically
meaningful and equitable. Future work will focus on refin-
ing the model’s interpretability, validating it in prospective
and real-world cohorts, and integrating multimodal patient
information to further support precision diagnosis and risk
stratification in Chagas cardiomyopathy.
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