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Abstract

Data-driven Chagas disease screening via electrocar-
diograms (ECGs) is limited by scarce and noisy la-
bels in existing datasets. We propose a biomarker-
based pretraining approach, where an ECG feature ex-
tractor is first trained to predict percentile-binned blood
biomarkers from the MIMIC-IV-ECG dataset, using a
bin-smoothing regularization to handle the sparsity in-
troduced by binning. The pretrained model is then fine-
tuned on Brazilian datasets (CODE15% and SaMi-Trop)
for Chagas detection. Our 5-model ensemble, developed
by the Ahus AIM team, achieved a challenge score of
0.412 on the hidden validation set, ranking 5/66 in De-
tection of Chagas Disease from the ECG: The George B.
Moody PhysioNet Challenge 2025. Source code and model
weights are shared on GitHub: https://github.com/Ahus-
AIM/physionet-challenge-2025.

1. Introduction

This work was developed as part of the George B.
Moody PhysioNet Challenge 2025, which aims to advance
automated ECG-based screening methods for Chagas dis-
ease.

Chagas disease, caused by the parasite Trypanosoma
cruzi, remains a significant health burden in Central and
South America [1]. If left untreated, the infection can re-
sult in potentially life-threatening cardiac, digestive, and
neurological complications. While treatments exist to slow
cardiovascular damage, serological testing to detect the
parasite is inaccessible for much of the at-risk population.
In this context, the use of AI-interpreted electrocardio-
grams (ECGs) is a promising, resource-efficient option for
large-scale screening.

Openly accessible ECG databases have been recorded
in regions affected by Chagas disease [2,3], but annotation
validity is limited, reducing the effectiveness of traditional
supervised deep learning approaches.

2. Methods

The following sections describe data sources, prepro-
cessing steps, biomarker-based pretraining strategy, subse-
quent fine-tuning, and the model architecture used for the
challenge.

2.1. Data sources

The MIMIC-IV-ECG [4] is collected across Beth Is-
rael Deaconess Medical Center, Boston, Massachusetts,
USA, spanning the period 2008 to 2019. The ECGs in
this dataset can be connected to biomarkers by connecting
them with the MIMIC-IV dataset [5]. Biomarker usage in
clinical practice is highly skewed, with most tests used in-
frequently and a few used routinely. To limit the number
of tests, selection was based on both prevalence and clin-
ical relevance. The tests used in pretraining are presented
in Table 1. The datasets used for fine-tuning are both col-
lected in Brazil, where Chagas disease is endemic. The
CODE15% dataset is collected by Telehealth Network of
Minas Gerais in the period 2010 to 2016, and is paired
with self-reported Chagas labels. In contrast, the SaMi-
Trop dataset only contains patients with chronic Chagas
cardiomyopathy. All utilized datasets are presented in Ta-
ble 2.

2.2. Preprocessing steps

Preprocessing involves standardizing ECG signals, re-
solving label inconsistencies, and normalizing biomarker
values for pretraining. Details for each component are pro-
vided in the subsections below.

2.2.1. Electrocardiograms

Across all datasets, ECGs are resampled to 400 Hz, fol-
lowed by dropping leads I, II, III, and aVR, as they are lin-
ear combinations of aVL and aVF defined by Einthoven’s
Law. During training, a single two-second snippet is ran-
domly extracted from each ECG. All snippets are normal-

https://github.com/Ahus-AIM/physionet-challenge-2025
https://github.com/Ahus-AIM/physionet-challenge-2025


Table 1. Biomarkers included for model pretraining (al-
phabetical).

Biomarker Clinical domain

Albumin Liver function
Calcium, Total Electrolytes
Creatinine Renal
Hematocrit Hematology
Hemoglobin Hematology
INR(PT) Coagulation
NTproBNP Cardiac
Potassium Electrolytes
Red Blood Cells Hematology
Troponin T Cardiac
Urea Nitrogen Renal

Table 2. Datasets used for model development. For the
pretraining dataset, not all ECGs were included, as each
ECG had to occur within 24 hours of a blood test.

Dataset # ECGs # Patients Step

MIMIC-IV-ECG 523,275 102,511 Pretraining
CODE15% 345,779 233,770 Fine-tuning
SaMi-Trop 1,959 1,959 Fine-tuning

ized to have zero mean and unit variance before being fed
into the model.

2.2.2. Chagas labels

In the CODE15% dataset, a total of 1,825 patients have
ECGs labelled both as Chagas-positive and negative. In
an attempt to reduce label noise, all ECGs for these pa-
tients are labelled using the average positive proportion of
ECGs. The aim is to reduce noise, without discarding these
patients, to preserve sample size while minimizing label
uncertainty.

2.2.3. Biomarkers

Normalizing biomarker values is challenging due to dif-
fering distributions and the need to preserve clinically rel-
evant cut-offs. We address this by replacing each value
with its percentile rank (binned into 100 intervals). The
label sparsity introduced by increasing the number of bins
is further discussed in Section 2.3.1. Biomarker results are
matched to ECGs by timestamp; ECGs without a paired
result within 24 hours are excluded from pretraining.

2.3. Training strategy

All model training is performed on the setup detailed in
Table 3. Across all model training, the Muon optimizer is
used for parameters with dimension ≥2, as it has proved
to converge faster and yield better results [6]. For the re-
maining parameters, i.e., biases and parameters in normal-
ization layers, Adam is used [7]. The same learning rate
is used for both optimizers. For clarity, the pretraining and
fine-tuning training recipes are described one at a time.

Table 3. Development environments and hardware.

Component Specification

System Debian 12
CPU Intel Core i9-14900KF
RAM 2×48 GB; 4800 MT/s
GPU NVIDIA GeForce RTX 5090
CUDA version 12.9
Programming language Python 3.12
Deep learning framework PyTorch 2.7.1+cu128

2.3.1. Biomarker based pretraining

The pretraining task is formulated as a classification
problem for each biomarker, where the target is the per-
centile rank of the test result. Most ECGs are not paired
with all selected biomarkers; in these cases, the loss is not
computed for those missing biomarker-ECG pairs. Using
classification instead of regression enables the model to
predict a probability distribution over possible blood test
values, which provides richer supervision and reduces bias
toward the mean value of each biomarker. Specifically,
the model outputs logits with shape Rbatch size×100×T with
T denoting the number of tests. Cross-entropy loss is
computed over the 100 percentile bins for each available
biomarker. The parameters used in pretraining are listed in
Table 4.

Table 4. Parameters used during biomarker-based pre-
training.

Parameter Value

Batch size 64
Optimizer Muon and Adam
Muon momentum 0.95
Learning rate 0.0037
Loss function Cross-entropy

To mitigate the label sparsity introduced by percentile
binning, we use a decoupled regularization step applied af-



ter each optimizer step. In essence, we enforce the induc-
tive bias of neighbouring bins sharing directions in weight
space. We treat the final fully-connected layer’s weight as

W ∈ R(100×T)×F

where F is the feature dimension of the activations just
before the last layer and T the number of tests. After the
usual gradient-based update, we apply an in-place smooth-
ing update with α = η β, where η is the learning rate and
β a fixed bin-smoothing factor. For each weight row Wi,
we then perform

Wi ←


(1− α

2 )W1 +
α
2 W2, i = 1,

(1− α)Wi +
α
2 (Wi−1 +Wi+1), 2 ≤ i ≤ 99,

(1− α
2 )W100 +

α
2 W99, i = 100.

Because this smoothing runs after back-propagation and
does not contribute to any gradients, it adds negligible
overhead. The bin-smoothing factor β is set to 1 in this
work, and it can be optimized as a hyperparameter.

2.3.2. Fine-tuning for Chagas screening

The fine-tuning step starts by initializing a feature ex-
tractor with the weights obtained in the pretraining step,
and dropping the last linear layer mapping to biomarkers,
instead replacing it with a new randomly initialized layer
that will be trained to output logits corresponding to the
probability of Chagas disease. Although the CODE15%
and SaMi-Trop datasets contain both self-reported and
strong labels, they are pooled. To ensure good generaliza-
tion, 5-fold cross-validation is used to train 5 models, with
each model being selected at the epoch where the valida-
tion loss is lowest. Parameters used in this step are detailed
in Table 5.

Table 5. Parameters used during fine-tuning.

Parameter Value

Batch size 128
Optimizer Muon and Adam
Muon momentum 0.95
Learning rate 0.001
Loss function Binary cross-entropy

2.4. Model architecture

The model is based on the InceptionTime architec-
ture [8], with minor modifications. Before the inception
blocks, we include two convolutional layers followed by
batch normalization and GELU activation. Each convolu-
tion uses a kernel size of 5 and a stride of 2, which ensures

that the receptive field within the network is sufficiently
large. The parameters for the InceptionTime network are
summarized in Table 6.

Table 6. Parameters for the InceptionTime network.

Parameter Value

Number of blocks 6
Kernel sizes 9, 19, 39
Number of filters 32
Bottleneck channels 32

2.5. Final ensemble

During inference, each ECG is divided into ten over-
lapping two-second segments, which are individually stan-
dardized and processed by the ensemble models. The log-
its produced by each model are transformed with a sig-
moid function, and the resulting probabilities are averaged
across all segments and ensemble members.

3. Results

The validation loss for biomarker-based pretraining
reached its minimum after three epochs. When ranking
biomarkers by validation-set perplexity, the model pre-
dicted NT-proBNP most accurately, followed by albumin,
hemoglobin, and troponin. Predicted probability distribu-
tions for selected biomarkers are illustrated in Figure 1.

The fine-tuned model was evaluated using the official
challenge metric, defined as the number of Chagas-positive
cases in the top 5% of ECGs sorted by model-predicted
risk, divided by the total number of cases. When evaluat-
ing the model using 5-fold cross-validation on the devel-
opment set, a mean challenge score of 0.439 (SD = 0.010)
and an AUC-ROC of 0.840 (SD = 0.008) were achieved.
When deploying the ensemble on the hidden validation set,
the ensemble achieved a challenge score of 0.412, resulting
in a ranking of red 5/66, also displayed in Table 7. Notably,
larger models resulted in better cross-validated scores on
the development set, but not on the hidden validation set.

Table 7. Challenge score on the hidden validation set.

Team Challenge score Rank

Ahus AIM 0.412 5/66

4. Discussion

While traditional approaches to label noise include par-
tial self-supervision, label correction techniques, early
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Figure 1. Shows the predicted probability distributions over blood test percentiles for four ECGs taken from four different
patients (one colour per patient). The vertical lines represent the actual values for the same patients, measured within
24 hours of ECG recording. The selected biomarkers represent a subset of the biomarkers used in pretraining. As the
probability distributions are defined over percentile bins, no units are displayed on the x-axis.

stopping, or robust loss functions, our method leverages
clinical biomarkers to guide the model in learning physio-
logically relevant ECG features before fine-tuning for Cha-
gas disease detection. One notable aspect of our study is
the geographical and clinical diversity of the datasets. Pre-
training was conducted on datasets collected in the USA,
where Chagas disease is rare, whereas fine-tuning was per-
formed on Brazilian datasets where the disease is endemic.
This split underscores the importance of evaluating domain
shift and raises questions regarding the generalizability of
features learned from one population to another. The de-
gree to which biomarker-driven pretraining can yield trans-
ferable and robust ECG representations across diverse set-
tings remains an area for further study.

Future work should assess the transferability of this
approach to other diseases and evaluate the impact of
varying the set of biomarkers, bin sizes, and pretraining
datasets. Additionally, systematic comparisons with other
label noise mitigation strategies would help clarify the rel-
ative strengths and weaknesses of biomarker-based pre-
training. This has not yet been done and is thus a limitation
of the current study.

5. Conclusion

We present a biomarker-based pretraining approach for
ECG-based Chagas disease screening, motivated by the
need for improved feature extraction in settings with lim-
ited or noisy disease labels. We believe the same frame-
work can be applied to other diseases, and it is especially
beneficial in cases where labels are few or of limited valid-
ity.
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