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Abstract

Aim: We present a reliability-aware hierarchical learn-
ing framework for ECG-based Chagas cardiomyopathy
screening in the George B. Moody PhysioNet Challenge
2025 by Team Revenger, aiming to maximize positive case
retrieval under prevalence constraints.

Methods: The 12-lead ECGs were resampled to 400
Hz, bandpass filtered (0.5–45 Hz), and z-score normal-
ized. We used a ResNet model integrated with squeeze-
and-excitation (SE) modules for binary classification. To
address severe class imbalance and the scarcity of expert-
confirmed labels, we applied stratified upsampling and
reliability-weighted label smoothing to prioritize expert-
confirmed positives over self-reported ones. Model train-
ing used an asymmetric loss to further penalize false neg-
atives and was optimized with AdamW and a OneCycle
learning rate scheduler. Model selection was based on the
Challenge score from an internal hold-out subset.

Results: On the hidden validation set, our method re-
ceived a Challenge score of 0.245 (rank 187 / 373). In
cross-validation on the public training data, our approach
achieved a Challenge score of 0.451.

Conclusion: The proposed method shows effective per-
formance for ECG-based Chagas screening, and high-
lights potential for improving detection accuracy and re-
liability in resource-limited scenarios.

1. Introduction

Addressing underdiagnosis of Chagas disease through
scalable ECG-based screening is the focus of the 2025
George B. Moody PhysioNet Challenge [1, 2]. Enabled
by aggregated multi-cohort ECG datasets [3–7], the Chal-
lenge frames a multi-source learning setting with hetero-
geneous label reliability and severe class imbalance.

In this work, we propose a reliability-aware hierar-
chical framework that prioritizes expert-confirmed la-
bels and mitigates severe class imbalance within a deep
ECG model, with optimization aligned to prevalence-

constrained sensitivity objectives.

2. Methods

2.1. Datasets and Preprocessing

We used three ECG datasets for model training, with
substantial differences in sample size, Chagas prevalence,
and label provenance as summarized in Table 1.

Dataset Size Chagas rate Label provenance

SaMi-Trop 1 631 100 % expert-confirmed
CODE-15% 345 779 1.795 % self-reported

PTB-XL 21 799 0 % N/A

Table 1: Dataset statistics and label provenance. Chagas
rate is the proportion of recordings labeled positive in each
dataset. N/A indicates that confirmed Chagas cases are not
expected (non-endemic population).

All ECGs were uniformly resampled to 400 Hz, band-
pass filtered (0.5–45 Hz), and z-score normalized to zero
mean and unit variance computed as in Eq. 1:

x̃ =
x− µx

σx
(1)

where x is the original ECG signal, µx and σx are the
mean and standard deviation of x, respectively. We ex-
cluded ECGs shorter than 1200 samples to ensure inputs
contain enough cardiac cycles for stable model analysis.

2.2. Reliability-Aware Hierarchical Super-
vision

We introduce a hierarchical supervision scheme that en-
codes source reliability through stratified label smoothing
and adaptive upsampling. Three reliability levels are de-
fined: (1) expert-confirmed positives (SaMi-Trop, max-
imal trust), (2) self-reported samples (CODE-15%, both
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Figure 1: Model architecture. Left: overall network: a stem (Conv1d, kernel size (ks) 15, 64 channels (Ch), Batch
Normalization (BN), ReLU) followed by four bottleneck residual blocks, a global squeeze-and-excitation (SE) module,
global max pooling, and an MLP head producing C = 2 logits. Channel widths shown (512 → 768 → 1024 → 1280)
are the expanded channels. Right: internal bottleneck structure (1–15–1 pointwise–temporal–pointwise). The middle
convolution of kernel size 15 uses a stride of 4 for temporal downsampling; kernel size 1 convolutions reduce and then
expand channels, and a projection convolution (kernel size 1, stride 4) aligns resolution and width for the residual path. For
clarity, dropout layers present in the implementation are omitted. Abbreviations: ks kernel size; Ch channels; BN Batch
Normalization; SE squeeze-and-excitation; MLP multi-layer perceptron.

positives and negatives, higher uncertainty), and (3) non-
endemic negatives (PTB-XL, very low true prevalence but
still mildly regularized). Given a one-hot label y ([0, 1]
for positives, [1, 0] for negatives) and number of classes
C = 2, the smoothed target is computed as in Eq. 2:

ỹ = (1− ε) · y +
ε

C
· 1, (2)

where ε is the smoothing factor which depends on the
reliability level: 0.0 (SaMi positives), 0.6 (CODE-15%
positives & negatives), 0.2 (PTB-XL negatives). This at-
tenuates overconfident gradients for noisier or potentially
misreported labels while preserving sharp supervision on
expert-confirmed cases.

Severe class imbalance was mitigated by upsampling

positives during training: positive samples from CODE-
15% were upsampled by a factor of 3, and those from
SaMi-Trop by 12. No upsampling was applied to PTB-XL,
which contains no positives. We chose these factors after
reviewing hidden validation scores from multiple submis-
sions, as shown in Table 2.

Smoothed labels and upsampling strategies for each
dataset are summarized in Table 3.

2.3. Model Architecture

We build upon the 1D ResNet ECG classifier of Ribeiro
et al. [3] and introduce three modifications.

(1) Bottleneck residual blocks. We replace basic
ResNet blocks with bottleneck blocks of kernel sizes



Upsample factor Challenge score
CODE-15% SaMi-Trop

- - 0.239∗

3 7 0.212
3 12 0.245

10 120 0.210
6 36 0.221

Table 2: Representative upsampling schemes and corre-
sponding Challenge scores on the hidden validation set.
The model and training strategies used were the same. “-”
indicates no upsampling.
∗ obtained during the unofficial phase.

Dataset Upsampling Smoothed labels

factor negative positive

SaMi-Trop 12 N/A [0, 1]
CODE-15% 3 [0.7, 0.3] [0.3, 0.7]
PTB-XL 1 [0.9, 0.1] N/A

Table 3: Smoothed labels (computed from Eq. 2) and up-
sampling strategies for each dataset.

1–15–1 (pointwise–temporal–pointwise). The middle tem-
poral convolution applies a stride of 4 for downsampling;
the two convolutions (kernel size 1) first reduce the num-
ber of channels and then expand them with an expan-
sion factor of 4. A projection convolution (kernel size
1, stride 4) is used in the residual branch whenever tem-
poral resolution or channel width changes. Across the
four blocks, the reduced (bottleneck) channel widths are
128 → 192 → 256 → 320, yielding expanded output
widths 512 → 768 → 1024 → 1280.

(2) Global squeeze-and-excitation (SE). After the fi-
nal bottleneck block, a single global SE module (reduction
ratio 8) [8] performs temporal average pooling to a chan-
nel descriptor, applies a two-layer bottleneck multi-layer
perceptron (MLP) 1280 → 160 → 1280 with ReLU and
sigmoid gating, and rescales the feature map channel-wise.

(3) Global pooling head for variable input length. In-
stead of flattening a fixed-length feature map as in the orig-
inal baseline, we apply global max pooling over the re-
maining temporal dimension, yielding a 1280-dimensional
vector irrespective of input length L. This vector is fed to
a lightweight two-layer classification MLP: a hidden fully
connected layer (1280 → 1024) with non-linear activa-
tion and dropout (rate 0.2), followed by a final linear layer
(1024 → 2) producing class logits.

Stem and regularization. A stem Conv1d (kernel size
15, stride 1, 64 channels) with BatchNorm and ReLU pre-

cedes the bottleneck stack. Within each bottleneck block,
we apply BatchNorm+ReLU after the first two convolu-
tions and dropout (rate 0.2) after each of those activations.
All convolutions use “same” padding to preserve temporal
length before downsampling operations.

The overall model architecture is illustrated in Fig. 1.

2.4. Training and Implementation Setups

We employed an asymmetric loss (ASL) [9] to comple-
ment the reliability-aware label smoothing strategy, jointly
addressing the challenges of severe class imbalance. Let
z = (z0, z1) denote the logits and p = softmax(z)1 the
predicted probability of the Chagas-positive class. The
ASL is defined in Eq. 3 with separate focusing parameters
for positives and negatives and a clipped negative proba-
bility term:

L = −y · (1− p)γ+ log(p)

− (1− y) · (pm)γ− log(1− pm),
(3)

where y is the (smoothed) positive-class target probabil-
ity, pm = max(p − m, 0), (γ+, γ−) = (1, 4) and margin
m = 0.05. We train for 30 epochs with batch size 128 us-
ing the AdamW optimizer (initial learning rate 1 × 10−4,
peak 6× 10−4 under a OneCycle scheduler, weight decay
1× 10−2). Early stopping (patience 10 epochs, monitored
on a fixed 20% internal hold-out subset) selects the final
model via the Challenge metric. Each training segment is
a uniform random crop (or center trim if shorter) of length
4096 samples. The full implementation, including model
construction, data pipeline, and optimization utilities, is
based on the torch-ECG framework [10].

3. Results

The Challenge score of our team “Revenger” on the hid-
den validation set was 0.245, ranking 187th among 373
submissions. The score on the internal hold-out of the
public training data, the hidden validation score, and the
validation ranking are summarized in Table 4.

Training Validation Test Ranking
0.451± 0.005 0.245 TBA 187 / 373

Table 4: Challenge scores for our submitted entries (team
“Revenger”). Training: internal hold-out mean ± std over
repeated runs. Validation: best among 10 validation sub-
missions. Test: to be announced. Ranking: position on the
hidden validation leaderboard.

4. Discussion and Conclusions

The hidden validation Challenge score presented in Ta-
ble 4 indicates that our proposed method is effective for



Chagas screening from ECGs, albeit with substantial room
for improvement. The result demonstrates our model’s
ability to learn diagnostically relevant features from ECGs
for this task under scarce and noisy supervision. This is
achieved through reliability-aware label smoothing, which
incorporates both label provenance and reliability instead
of treating all positive labels uniformly. Together with the
asymmetric loss and strategic upsampling, these results in-
dicate that explicitly modeling label reliability helps stabi-
lize the learning process more effectively than introducing
additional architectural complexity. Overall, our approach
offers a scalable and resource-efficient solution and aligns
well with the Challenge’s objective of identifying high-risk
individuals under limited serological testing capacity.

However, the performance gap between our internal
hold-out subset and the hidden validation set suggests two
primary limitations. First, the reliability weights (smooth-
ing factors) were pre-defined based on label provenance
rather than learned from data. This static assignment
cannot capture the inherent heterogeneity of label qual-
ity within each source. Second, positive upsampling was
applied uniformly at the dataset level using fixed factors.
This strategy overlooks variations in individual sample dif-
ficulty and does not adapt to the model’s evolving confi-
dence during training. Furthermore, we did not make use
of the additional labels available in some datasets, such
as arrhythmia labels, to design and implement auxiliary
learning tasks that could have enhanced the performance
of the main task, Chagas screening.

Future research directions will primarily focus on the
development of a self-adaptive supervision framework.
This includes dynamic weighting schemes for learning
instance-specific reliability scores, moving beyond static
smoothing factors; and adaptive sampling strategies that
respond to the model’s evolving confidence during train-
ing, offering a promising alternative to fixed upsampling
factors. Data augmentation techniques, such as CutMix
[11] and SMOTE [12], could be applied to further ex-
pand and diversify the positive samples, thereby enhancing
the model’s robustness against overfitting and improving
generalization to underrepresented patterns. Additionally,
a multi-task learning framework leveraging auxiliary ar-
rhythmia labels could enhance feature representation and
improve generalization for the primary Chagas screening
task. Exploring self-supervised pre-training on large-scale
unlabeled ECG data also represents a promising direc-
tion to learn more transferable representations before fine-
tuning on the target task.
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