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Abstract 

 Atrial fibrillation (AF) is a growing global health 

concern, driving the need for personalized diagnostic and 

treatment strategies. Computational modeling enables 
precision medicine by integrating patient-specific 

anatomical and electrophysiological data. In this study, we 

simulated sinus rhythm and arrhythmic behavior in 20 bi-

atrial virtual patients, performing 800 simulations across 

varying structural and electrical remodeling parameters 

and stimulus locations. Key markers of increased AF 

vulnerability included greater lateral atrial extent, longer 

Bachmann's bundle, and higher total activation time, each 

linked to up to a 20% rise in AF inducibility. Electrical 

remodeling significantly increased arrhythmic incidence 

compared to less remodeled substrates (50 ± 19% vs 

37 ± 19%, p = 0.02), while impaired tissue conductivity 
(reduced diffusion) further heightened susceptibility 

(54 ± 14% vs. 37 ± 16%, p < 0.001). Although the effects 

of remodeling and diffusion changes on AF inducibility 

were consistent across both atria, stimuli applied in the LA 

resulted in higher inducibility. These results highlight that 

AF progression due to remodeling or conduction 

impairment leads to more arrhythmogenic substrates, 

independent of anatomical variability. These findings 

support the use of virtual cohorts to uncover predictive 

biomarkers and guide individualized AF therapies. 

 

1. Introduction 

Atrial fibrillation (AF) cases have risen by more than 

30% over the last twenty years, with expectations that this 

growth will continue in the foreseeable future [1]. 

Advances in computational methods, especially those 

utilizing virtual patient populations and digital twin 

technologies, are becoming increasingly valuable for 
improving diagnosis, assessing risk, and personalizing 

treatment plans [2]. Due to significant differences in how 

patients respond to treatment, identifying consistent 

anatomical and electrophysiological biomarkers is 

essential for developing customized approaches to 

managing AF. 

To ensure broad applicability, it is necessary to reflect 

both anatomical and electrophysiological diversity within 

the patient population. Recent investigations have 

addressed this challenge by employing virtual cohorts that 

modify either the electrical behavior of the heart while 

keeping anatomy fixed, or vice versa. These efforts have 

advanced our understanding of therapeutic response [3-5], 
facilitated the identification of important modeling 

parameters [6, 7], and generated synthetic datasets suitable 

for machine learning applications [8]. 

In this study, we employ a virtual cohort of bi-atrial 

anatomical models to simulate both sinus rhythm and 

arrhythmic activity, incorporating realistic anatomical and 

electrophysiological inter-patient variability as observed in 

AF populations. The virtual simulations aim to uncover 

structural and electrical biomarkers associated with the 

initiation and persistence of AF. Rather than focusing on 

patient-specific modeling, the objective is to analyze 
cohort-level variability and its influence on AF dynamics. 

By doing so, we aim to identify key indicators of AF 

susceptibility and progression, ultimately supporting the 

development of more targeted and effective therapeutic 

strategies. 

 

2. Material and Methods 

2.1. Computational domains 

In this study, a subset of 20 atrial geometries was 

selected from a larger dataset generated using Statistical 

Shape Modeling (SSM) techniques [6]. These geometries 

were chosen to reflect the anatomical variability of the full 

cohort, based on eight key measurements per atrium. These 

measurements were calculated as Euclidean distances 
between specific anatomical landmarks. These metrics 

were selected to span major anatomical axes and 

structures, maximizing geometric heterogeneity across the 

selected set and promoting representativeness of the full 

population [3]. For the left atrium (LA), seven landmarks 

were used: the midpoint between the right pulmonary veins 

(RPVs), the midpoint between the left atrial appendage 

(LAA) and left pulmonary veins (LPVs), the center of the 



posterior wall, the top of the mitral valve (MV), the fossa 

ovalis (FO), the apex of the LAA, and the midpoint 

between the LAA and the MV. In the right atrium (RA), 

seven points were identified: the bases of the superior vena 

cava (SVC) and inferior vena cava (IVC), the FO, the 
lateral base and apex of the right atrial appendage (RAA), 

the upper part of the tricuspid valve (TV), and the midpoint 

between the venae cavae.  

The eight primary anatomical descriptors (M1–M8) 

used to characterize variation were: M1, the distance from 

the SVC to the IVC; M2, from the FO to the lateral base of 

the RAA; M3, from the upper part of the TV to the 

midpoint between the venae cavae; M4, from the midpoint 

between the LAA and the LPVs to the midpoint of the 

RPVs; M5, from the center of the posterior wall to the top 

of the MV; M6, from the FO to the midpoint between the 

LAA and MV; M7, from the apex to the base of the RAA; 
and M8, from the apex of the LAA to the midpoint between 

the LAA and MV. In addition to these landmark-based 

distances, two further anatomical indices were included: 

the lateral atrial extent (LAE), given by the sum of the 

distances from the LAA to the FO and from the FO to the 

RAA; and the length of Bachmann’s bundle (BBL), 

corresponding to the span between its insertion points in 

the left and right atria. Figure 1A illustrates all the 

anatomical landmarks and their associated measurements, 

while Figure 1B presents the numerical values and 

distribution of these measurements across the selected 
geometries. 

 
Figure 1. (A) Anatomical segments used for morphological 

measurements in the atrial geometries. (B) Measurements 

values distribution. 
 

All geometries were remeshed into tetrahedral meshes 

at 0.5 mm resolution, yielding an average of 644,240 ± 

75,155 vertices and 3,642,000 ± 425,150 elements. Fiber 

orientation, and tissue classification were assigned 

following the definitions from the original SSM dataset [6] 

(Figure 2), while electrophysiological properties were 

assigned following previous literature [9]. 

 

2.2. Simulations framework 

Atrial biophysical simulations were conducted using the 

Koivumäki et al. cellular model [10], in a monodomain 

model. In our simulations, two key changes were 

introduced to replicate AF-related substrate alterations: 

one affecting ionic remodeling and another affecting 

structural remodeling. Electrical remodeling was 

implemented by progressively altering the ionic properties 

of atrial cells, simulating the transition from a healthy state 
(0% remodeling; APD90(2 Hz)=240ms) to a fully 

remodeled persistent AF state (100%; APD90(2 

Hz)=102ms), using intermediate levels of {50, 75, 100, 

125}% remodeling [11]. 

In parallel, we modified the diffusion properties of the 

tissue to reflect structural remodeling. Diffusion governs 

the spread of electrical activation between neighboring 

cells and is influenced by both intercellular distances and 

tissue anisotropy. To simulate more advanced AF stages, 

global reductions in conduction were also introduced using 

scaling factors of 0.50 and 0.25, mimicking the effects of 
diffuse fibrotic remodeling on electrical propagation. 

Simulations were executed using a custom GPU-

accelerated finite element solver [12], with a temporal 

resolution of 20 μs. 

 

2.3. Simulated population 

As illustrated in Figure 2, two types of simulations were 
conducted to explore atrial behavior under different 

physiological and pathological conditions. First, sinus 

rhythm simulations were performed on all 20 atrial 

geometries under baseline conditions (0% electrical 

remodeling and full diffusion (100%)) by applying a 

standard pacing protocol of five stimuli at 1000 ms 

intervals from the sinoatrial node (SAN). From these 

simulations, the total activation time (TACT) was 

computed as the difference between the local activation 

times of the last and first activated nodes. 

To assess AF inducibility, additional simulations were 
carried out using decreasing pacing protocols applied at 10 

different atrial sites (six in LA and four in RA, as shown in 

Figure 2). Each site was paced using a decreasing cycle 

length protocol (240 ms to 140 ms) across multiple 

substrate conditions, combining four levels of electrical 

remodeling (50%, 75%, 100%, and 125%) with two levels 

of reduced diffusion (25% and 50%).  

To reduce computational cost, five of the ten stimulation 

sites were randomly selected for each substrate condition. 

AF was considered induced when self-sustained electrical 

activity persisted for at least five seconds following the 

final stimulus. In total, 800 simulations were performed, 



corresponding to 20 virtual patients, 8 substrate 

combinations, and 5 pacing locations per condition. 

 

 
Figure 2. Simulation workflow.  

 

3. Results 

3.1. Sinus Rhythm and Atrial Fibrillation 

induction 

Simulations under sinus rhythm conditions (Figure 3A) 

produced local activation time (LAT) maps, with an 

average TACT of 120 ms, confirming the model’s 

accuracy in capturing realistic electrophysiological 

behavior.  

When inducing AF, models with AF substrates (25-50% 

diffusion × 50-125% remodeling) successfully maintained 

AF in 20-70% of the cases. Remodeling and diffusion 

changes had comparable effects on AF inducibility 

regardless of whether stimuli were applied in the LA or 

RA, although LA pacing sites consistently resulted in 
higher overall inducibility (Figure 3B) 

We then explored the relationship between various 

parameters and arrhythmia occurrence. The effect of 

electrical remodeling on arrhythmia induction was evident, 

with substrates exhibiting more advanced remodeling 

showing a higher arrhythmic incidence (37 ± 19 % vs 50 ± 

19 %, p = 0.02). In addition, diffusion levels significantly 

influenced arrhythmia susceptibility, with lower diffusion 

rates leading to higher arrhythmic occurrences (54 ± 14 % 

vs 37 ± 16 %, p < 0.001). These findings underline that 

advanced AF progression, whether due to electrical 

remodeling or decreased diffusion, promotes more 
arrhythmic substrates, irrespective of patient anatomy. 

 

  
Figure 3. (A) LAT maps for each of the 20 atria included 

in the study, along with the TACT (in milliseconds) for 

each atrium. (B) Frequency of arrhythmic events observed 

across all combinations of ionic and structural remodeling, 

comparing the differences between stimulus points in the 
LA and RA. 

 

3.3. Anatomical and electrophysiological 

analysis of arrhythmicity 

Arrhythmicity was analyzed in relation to patient-

specific anatomical and electrophysiological parameters. 

Virtual patients with smaller lateral atrial extent (<105.8 

mm) showed lower arrhythmic inducibility (41±25% vs 

51±22%, p = 0.01, Figure 4A), suggesting larger atria are 

more conducive to AF maintenance. Similarly, patients 

with larger Bachmann's bundle (>6.40 mm) had higher 

arrhythmic rates (41±25% vs 49±22%, p = 0.02). In terms 

of electrophysiology, patients with higher TACT (>118 

ms) also had higher AF incidence (40±24% vs 50±23%, p 
= 0.01, Figure 4B), indicating longer propagation times 

promotes AF persistence. 

We then examined the effect of anatomical and 

electrophysiological parameters on AF progression. 

Patients with larger lateral atrial extent (>105.8 mm) were 

more sensitive to electrical remodeling, with AF induction 

rates increasing from 31% to 53% for 50% and 125% 

remodeling, respectively (Figure 4C). In contrast, patients 

with smaller lateral extent showed a modest increase (26% 

to 38%) in AF incidence. A similar pattern was observed 

for sinus rhythm TACT: patients with shorter TACT (<118 
ms) exhibited less variation in AF inducibility (11%) 

compared to those with longer TACT (25%) (Figure 4D). 



 
Figure 4. Total inducibility ratio as a function of: (A) 

Lateral atrial extent; (B) Total activation time. Inducibility 

ratio as a function remodeling for anatomies grouped by 

(C) atrial lateral extent and (D) total activation time. 

 

4. Discussion and Conclusions 

This study examined a virtual cohort of 20 bi-atrial 

geometries across 800 simulations, varying electrical 

remodeling (APD) and diffusion (conductivity) to robustly 

assess AF inducibility. Consistent with expectations, 

greater remodeling and reduced diffusion increased 

arrhythmic vulnerability. Importantly, atrial anatomy, 

especially lateral extent, modulated susceptibility and its 

interaction with remodeling. Simulated TACT maps 

matched physiological sinus rhythm patterns, supporting 
the validity of our findings. 

Prior studies have highlighted the need to account for 

both anatomical and electrophysiological variability in AF 

research to better guide therapy and ablation strategies. 

Our results reinforce this by showing that local anatomical 

features, such as lateral extent and activation time, 

modulate AF susceptibility in interaction with cellular 

remodeling. Unlike approaches based on total atrial 

volume [3], we selected geometries using inter-landmark 

distances to capture regional anatomical variation. 

Although our sample includes only 20 bi-atrial 

geometries, future studies should expand cohort size and 
pacing coverage, as in [13], where over 200 stimulation 

sites were used to study arrhythmia vulnerability across 

fibrosis patterns. 

This work’s clinical relevance lies in using virtual 

cohorts to enhance patient-specific modeling and 

personalize AF treatment by identifying biomarkers of 

vulnerability and prognosis. Incorporating real-world 

measures like anatomical size or P-wave duration can 

further refine models, supporting efforts to prevent AF 

progression and improve clinical outcomes.  
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