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Abstract 

Chagas disease (CD) is a tropical parasitic disease 
that often remains asymptomatic but can lead to serious 
long-term cardiac complications. This study describes 
our contribution to the George B. Moody PhysioNet 
Challenge 2025, which focused on developing deep 
learning algorithms to detect CD using 12-lead 
electrocardiogram (ECG) data. We trained a 
convolutional neural network initialized with weights 
from ECGFounder, a foundation model pretrained on 
over 10 million ECGs. Model development used 
multinational datasets and addressed label noise by 
applying soft labels to ECGs with features suggestive of 
asymptomatic CD, such as right bundle branch block and 
atrial fibrillation. The model was evaluated using the true 
positive rate among the top 5% of predictions 
(TPR@5%), reflecting a scenario of resource-constrained 
deployment. Our team, UMC Utrecht, achieved a 
TPR@5% challenge score of 0.280, resulting in a 130th 
overall place. These findings underscore the potential of 
ECG-based tools for screening CD in settings with 
limited access to serological testing. 
 
 
1. Introduction 

Chagas disease (CD) is a zoonotic parasitic disease 
caused by the protozoan Trypanosoma cruzi and 
primarily transmitted by triatomine insects. Although 
endemic to Latin America, global migration has led to its 
spread to non-endemic regions, including Europe, North 
America, and Australia, with an estimated 6 million 
people affected worldwide [1].   

The early acute phase of Chagas disease is curable 
with timely treatment, but up to 70% of individuals 
remain asymptomatic for years. A subset of these patients 
eventually develop chronic Chagas cardiomyopathy 
(ChCM), which may manifest decades after the initial 
infection. This condition encompasses a spectrum of 
cardiac involvement, from isolated conduction 
disturbances and mild wall motion defects to severe heart 

failure, thromboembolic complications, and life-
threatening ventricular arrhythmias [1,2]. Once 
established, ChCM is associated with high morbidity and 
mortality, and treatment options are limited, making early 
identification of at-risk individuals important.  

Electrocardiographic (ECG) abnormalities often 
represent the transition from asymptomatic CD to 
clinically apparent ChCM. Although no single electrical 
pattern is pathognomonic for CD, common 
electrocardiographic findings include right bundle branch 
block (RBBB) with or without left anterior hemiblock, 
and atrial fibrillation (AF) [2]. Detecting such 
abnormalities, or even more subtle electrical signatures, 
provides an opportunity to identify infected patients 
before progression to overt cardiomyopathy, when 
preventive measures and monitoring may still alter 
outcomes.  

This forms the rationale for the 2025 George B. 
Moody PhysioNet Challenge, which calls for the 
development of models to screen for CD using ECG data 
[3]. As a contribution to this effort, we developed a 
convolutional neural network to detect CD based solely 
on ECG input.  
 
2. Methods 

2.1. Datasets 

Model development was based on the provided 
challenge datasets, which consist of three sources: the 
CODE-15% dataset [4], which includes over 300,000 12-
lead ECG recordings from Brazil, with self-reported 
binary CD labels; the SaMi-Trop dataset [5], containing 
1,631 12-lead ECGs from serologically confirmed CD 
patients in Brazil; and the PTB-XL dataset [6], which 
includes 21,779 12-lead ECGs from Europe, presumed to 
be CD-negative. A total of 329,280 patients were 
included in the model derivation dataset, and 36,905 
patients were held out for internal benchmarking 
purposes.  
 
 



2.2. Preprocessing 

    Model training was based solely on raw ECG signal 
data. ECGs were excluded if deemed excessively noisy, 
defined as having amplitudes exceeding ±10 mV after 
mean-centering, or a standard deviation greater than 3  
mV. This led to the exclusion of 13,137 (3.99%) of 
ECGs.  

Remaining ECGs were resampled to 500 Hz where 
necessary, followed by application of a bandpass filter 
(0.5-100 Hz) and notch filters at 50 Hz and 60 Hz to 
remove powerline interference. Signals were either 
cropped or zero-padded to a fixed length of 5,000 
samples (10 s). Both transformations were centered, 
meaning that cropping and zero padding both took place 
at the beginning and end of the waveform in equal parts. 
The model derivation cohort was split into a training 
(90%) and internal validation (10%) set. 

The classification task used binary labels indicating the 
presence of CD, derived from either serologically 
confirmed or self-reported sources. For patients in the 
CODE-15% dataset with a negative label but ECG 
abnormalities suggestive of asymptomatic CD, soft labels 
were applied. Soft probabilities were assigned based on 
log odds ratios (OR) associated with RBBB (OR 4.6) and 
AF (OR 1.7), as described in [2]. These probabilities were 
scaled and capped at 0.49 to prevent reclassification as 
positive cases. 

 
2.3. Model Architecture 

We employed transfer learning using ECGFounder, a 
pretrained ECG foundation model [7]. This model, 
trained on over 10 million 12-lead ECGs from the 
Harvard-Emory database, is designed to extract 
generalizable representations of cardiac electrical activity. 
In short, the model was trained using a multilabel ECG 
classification task, with an adapted loss function to 
account for unlabelled positive cases. 

The input to ECGFounder is a 12×5000 ECG matrix 
(12 leads, 5000 time steps). The first layer applies a 1D 

convolution with 64 filters, followed by a sequence of 
residual convolutional stages with squeeze-and-excitation 
blocks and skip connections to stabilize training (Figure 
1). The network progressively downsamples the temporal 
dimension while expanding the channel depth, extracting 
increasingly abstract features. By the final stage, 
representations are aggregated and passed to a fully 
connected output layer. 

For our task, we initialized the backbone with 
pretrained ECGFounder weights and replaced the final 
classification head with a single sigmoid output neuron 
for CD prediction. We finetuned the network in two 
parameter groups: the backbone was updated 
conservatively (learning rate = 1×10⁻⁵) to preserve 
pretrained features, while the classification head was 
trained with a higher learning rate (1×10⁻⁴) to adapt to the 
new task. Optimization used AdamW with separate 
learning rate schedules: a cosine annealing warm restart 
scheduler for the backbone (T0 = 8, ηmin = 1×10⁻⁶), 
allowing gradual and cyclic learning rate reductions to 
encourage stable convergence without catastrophic 
forgetting, and a linear warmup scheduler for the head 
(start factor = 0.1, 3 iterations), ensuring smooth 
adaptation from randomly initialized weights. This 
combination balanced conservative fine-tuning of the 
pretrained representation with more aggressive training of 
the classification head. 

 
2.4. Model Training and Evaluation 

Training was performed using an NVIDIA RTX 
A6000 GPU. We used a batch size of 100, for up to 10 
epochs using binary cross-entropy loss with logits. Early 
stopping (patience = 3 epochs) was applied, and the best 
checkpoint (lowest validation loss) was retained. 
Additional metrics (AUROC, accuracy, precision, recall, 
F1) were monitored for completeness but not used for 
checkpointing.  

Model performance was assessed using the challenge 
score, defined as the true positive rate for the binary 
prediction among the top 5% of model predictions 

Figure 1. ECGFounder architecture for transfer learning. Input ECG (12×5000) passes through one convolutional (64 
filters) and seven residual stages (yellow) with progressive downsampling and channel expansion (64 to 1024; 5000 to 
20). Representations are aggregated and passed to a fully connected output layer (blue). 



(TPR@5%). Model’s area under the receiver operating 
curve (AUROC), area under the precision-recall curve 
(AUPRC), accuracy, and F-measure were also calculated.  
 
3. Results 

On the official hidden data, our model achieved a 
challenge score of 0.280, placing it rank 130/367. Internal 
5-fold cross-validation on the training dataset yielded a 
challenge score of 0.402 (range 0.388-0.415) and an 
AUROC of 0.842 (range 0.841-0.843) (Table 1). This 
should be viewed relative to the maximum attainable 
challenge score of 0.455, determined by the 2.3% 
prevalence in the 316,143 total cases in the training set. 
 
Table 1. Challenge score on the hidden test set and 
classification metrics from 5-fold cross-validation on the 
training data. 
 

 Mean (range) 
Hidden test set  
Challenge score 0.280 
5-fold cross-validation 
training data 

 

Challenge score 0.402 (0.388-0.415) 
AUROC 0.842 (0.841-0.843) 
AUPRC 0.190 (0.184-0.197) 
Accuracy 0.976 (0.975-0.977) 
F-measure 0.183 (0.164-0.197) 

Abbreviations. AUPRC, area under the precision recall 
curve; AUROC, area under the receiver operating curve. 
 
Table 2. Baseline characteristics stratified by top and 
bottom 5% of predicted probabilities. 
 
 Top 5% Bottom 5% 
CD, n (%) 2,885 (18.3%) 10 (0.1%) 
Age, mean (SD) 67.3 (14.6) 42.4 (24.8) 
Male sex, n (%) 7,835 (49.6) 7,331 (46.4) 
SaMi-Trop, n (%) 570 (3.6) 2 (0.0) 
CODE-15%, n (%) 15,151 (95.8) 9,180 (58.1) 
PTB-XL, n (%) 87 (0.6) 6,626 (41.9) 
LBBB, n (%)* 403 (2.6) 86 (0.5) 
RBBB, n (%)* 7,606 (49.9) 246 (1.6) 
AF, n (%)* 2,301 (15.1) 85 (0.5) 
1dAVb, n (%)* 816 (5.4) 171 (1.1) 
Normal ECG, n (%) 294 (1.9) 9,800 (62.0) 
*Not available for SaMi-Trop cases.  
Abbreviations. AF, atrial fibrillation; 1dAVb, first degree 

atrioventricular block; CD, Chagas disease; LBBB, left 
bundle branch block; RBBB, right bundle branch block. 
 

When comparing patients in the top versus bottom 5% 
of predicted probabilities, individuals in the highest 
probability group were older (mean age 67.3±14.6 vs 
42.4±24.8 years), more frequently male (49.6% vs 
46.4%), and more commonly from the SaMi-Trop and 
CODE-15% dataset (95.8% vs 58.1% and 3.6% vs 0.0%) 
(Table 2). This group also showed a higher prevalence of 
electrocardiographic abnormalities, including left bundle 
branch block (2.6% vs 0.5%), right bundle branch block 
(49.9% vs 1.6%), atrial fibrillation (15.1% vs 0.5%), and 
first-degree atrioventricular block (5.4% vs 1.1%).  
 
4. Discussion 

We applied transfer learning with ECGFounder, a 
large-scale foundation model pretrained on more than 10 
million ECGs, to the task of CD detection from 12-lead 
ECGs. Our approach achieved a challenge score of 0.280 
on the hidden test set data, ranking 130th overall. Internal 
5-fold cross-validation yielded a higher score of 0.402. 
The gap between internal and external performance likely 
reflects population and label differences, as well as some 
overfitting to the training distribution. Importantly, the 
prevalence of CD was similar across datasets and is 
consistent with real-world settings (~2%). In this context, 
our findings should be interpreted as proof of concept: 
ECG-based AI can detect patterns relevant to CD, but our 
performance was likely constrained by reliance on weakly 
labeled data, pretraining primarily on non-endemic 
populations, and potential signal loss from fixed-length 
signal standardization. 

A key strength of our strategy was the use of 
generalizable ECG representations learned from very 
large, diverse datasets. Rather than training a network 
from scratch, we transferred broad ECG knowledge to the 
CD setting. By finetuning the backbone conservatively 
while adapting the classification head more aggressively, 
we preserved pretrained features while tailoring the 
model to the challenge goal. In addition, the use of soft 
labels for ECG patterns strongly associated with CD (e.g., 
right bundle branch block, atrial fibrillation) allowed 
better exploitation of weakly labeled data and reduced the 
influence of mislabeled negatives. Together, these design 
choices likely enhanced robustness to class imbalance and 
label noise and facilitated detection of subtle 
abnormalities consistent with CD. 

Several limitations should be acknowledged. First, 
ECGFounder was primarily trained on non-endemic 
populations, which may limit its ability to fully capture 
disease-specific features in CD. Second, signal 
standardization to a fixed 10-second window was 
suboptimal, as cropping discards useful information while 
padding includes a large section of flat segments in the 



training data that may have distorted model learning by 
making it adapt to artificial patterns rather than 
physiological signals. To address this, we also trained 
models using a fixed 6-second input to avoid zero 
padding; however, performance was inferior, suggesting 
that the additional signal content outweighed the 
drawbacks of padding. Third, the CODE-15% dataset 
relied on self-reported labels, making mislabeling likely. 
Given the low disease prevalence, even a small 
proportion of mislabeled cases can have a 
disproportionate influence on model training. Although 
the use of soft labels partly mitigated this, label noise 
remained a challenge.  

Looking ahead, the major challenge for AI-based ECG 
screening of CD remains the combination of low disease 
prevalence and imperfect labels. Strategies such as 
oversampling, synthetic data generation, or multitask 
learning on CD-associated abnormalities may help 
improve sensitivity to rare cases, but ultimately progress 
depends on access to larger, serologically confirmed 
datasets. Moreover, models that can process variable-
length inputs without padding or cropping may make 
better use of the available ECG signals. For deployment 
in practice, systematic storing of predictions and 
outcomes would enabling continuous validation and 
iterative refinement of screening strategies. 
 
5. Conclusion 

We developed a deep learning model to detect CD 
from 12-lead ECGs as part of the 2025 George B. Moody 
PhysioNet Challenge. By combining large multinational 
datasets with strategies to address label noise and class 
imbalance, our model achieved reasonable performance 
and highlighted characteristic ECG features of high-risk 
patients. While further improvements will depend on 
larger serologically confirmed cohorts and methods 
robust to low prevalence, our findings support the 
potential of ECG-based AI as a scalable screening tool for 
CD. 
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