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Abstract

Chagas disease affects millions worldwide and can
progress to chronic cardiomyopathy. Early detection is
essential, but access to serological tests remains limited
in endemic regions. Since Chagas-related abnormalities
can be detectable on electrocardiograms (ECGs), we de-
veloped two automated approaches for disease screening
in the framework of the George B. Moody PhysioNet Chal-
lenge 2025. The first is a deep learning method based on a
residual neural network (ResNet) applied directly to ECG
waveforms. The second is a machine learning pipeline that
extracts fiducial features (intervals, slopes, and amplitude)
and classifies them using Gradient Boosting. On internal
validation, the ResNet achieved a score of 0.723 and the
machine learning pipeline 0.486. In the unofficial phase,
the ResNet reached 0.566 and ranked 20th. In the official
phase, performance dropped to 0.061 for the ResNet, while
the ML pipeline achieved 0.088. These results illustrate the
challenges of robust ECG-based Chagas screening, as the
official phase evaluates true generalization from diverse
clinical sources.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi, affects
an estimated 6—7 million individuals globally, with the ma-
jority residing in South America but cases increasingly re-
ported worldwide due to migration. Chronic Chagas car-
diomyopathy represents the most severe form of the dis-
ease and is a major cause of morbidity and mortality in
endemic areas. Between 20% and 40% of chronically
infected individuals eventually develop cardiac involve-
ment, which may manifest as heart failure, arrhythmias,
or thromboembolic events [1]. Early diagnosis is essential
to prevent progression, yet access to confirmatory serolog-
ical testing remains limited in resource-constrained envi-
ronments.

Electrocardiography offers a simple, inexpensive, and
widely available diagnostic tool. Chagas patients often

present conduction abnormalities, ventricular arrhythmias,
or nonspecific ST-T changes, which may serve as early
markers of disease [2,3]. Automated ECG interpretation
supported by artificial intelligence (AI) has shown increas-
ing promise in cardiovascular medicine [4, 5].

Two main Al paradigms are commonly explored for
ECG analysis. Deep learning (DL) methods learn directly
from raw waveforms, capturing complex morphological
and temporal patterns without requiring explicit feature en-
gineering [6]. In contrast, feature-based machine learning
(ML) approaches rely on manually engineered descriptors
derived from the ECG signal, which are then used by con-
ventional classifiers. While DL models can automatically
learn complex representations and often achieve superior
accuracy when trained on large datasets, ML approaches
retain the advantage of interpretability and can offer ro-
bustness when based on physiologically meaningful fea-
tures.

The George B. Moody PhysioNet Challenge 2025 pro-
vides a large, curated dataset of annotated ECGs for the
development of algorithms targeting Chagas disease detec-
tion. In this work, we present and compare two comple-
mentary approaches: a residual neural network (ResNet)
tailored for end-to-end ECG classification, and a feature-
based ML pipeline that extracts fiducial ECG features and
classifies them using Gradient Boosting. We report results
from internal validation as well as from the unofficial and
official phases of the Challenge, highlighting the strengths
and limitations of each method.

2. Methods

2.1.  Study Population

The dataset was provided by the George B. Moody
PhysioNet Challenge 2025 and included standard 12-lead
ECGs from multiple public and private sources. The
largest portion came from the CODE-15% dataset (Brazil,
>300,000 ECGs, 400 Hz, 7-10 s) with weak labels based
on self-reported Chagas status. The SaMi-Trop dataset
(Brazil, 1,631 ECGs, 400 Hz, 7-10 s) consisted entirely



of serologically confirmed positive cases, providing strong
labels. The PTB-XL dataset (Germany, 21,799 ECGs, 500
Hz, 10 s) contained presumed negative cases, adding di-
versity in morphology and acquisition protocols.

In addition, several smaller private datasets from en-
demic regions with strong serological labels were reserved
for hidden validation and testing. All data were distributed
in WFDB format with metadata on demographics, acqui-
sition parameters, and binary Chagas labels. This hetero-
geneous mix of weakly and strongly labeled data was in-
tended to reflect real-world screening conditions.

2.2. Deep Learning Approach

2.2.1. Preprocessing

All ECGs were resampled to a uniform frequency of 500
Hz. Baseline wander was removed using a high-pass filter
with a 0.5 Hz cutoff. To ensure consistent input dimen-
sionality, signals were normalized to a fixed length of 10 s:
shorter recordings were zero-padded while longer record-
ings were cropped centrally. Each lead was z-score stan-
dardized.

A signal quality index (SQI) was implemented to de-
tect corrupted or unreliable ECGs [7]. The SQI combined
measures of frequency content, amplitude distribution, and
recording duration. ECGs failing the SQI threshold were
automatically assigned to the non-Chagas class during in-
ference.

2.2.2. Model Architecture

We employed a deep residual convolutional neural net-
work (ResNet), consisting of stacked residual blocks with
batch normalization and ReLU activations. Each block
incorporated skip connections to enable gradient flow in
deeper networks. The network was designed to capture
both local waveform morphology and long-range tempo-
ral dependencies across leads. Global average pooling was
applied before the final dense layer with sigmoid activation
for binary classification (Figure 1).

2.2.3. Training Strategy

Training was performed using the Adam optimizer with
an initial learning rate of le-4 and binary cross-entropy
loss. We applied early stopping based on validation perfor-
mance. Class imbalance was addressed through weighted
loss functions. Data augmentation included random crop-
ping and amplitude scaling to improve generalization.
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Figure 1: ResNet model architecture.

2.3. Feature-Based Machine Learning Ap-
proach

2.3.1. Preprocessing

In parallel, we implemented a feature-based ML
pipeline. ECGs were band-pass filtered (1-40 Hz), resam-
pled to 400 Hz.

2.3.2. Feature extraction

Fiducial points were detected using the neurokit2 library
[8]. From these fiducial points, we extracted a set of inter-
pretable features per lead (Figure 2), similarly to [9]:

« Amplitudes: median amplitude of P, Q, R, S, J and T
points.

« Ratios: R/P and R/T amplitude ratios.

o Slopes: ascending and descending slopes of P and T
waves, as well as QR, RS, and SJ segments.

o Intervals: median duration of PR, PS, PT, QT, QRS, RS,
ToTp and TpTe intervals.

« Negative percentage of QRS area.

For each feature, the median value across all beats of a
recording was computed, resulting in 24 features per lead.
Since all 12 leads were processed, the final patient-level
feature vector consisted of 288 features (24 x 12).



Amplitudes

Slopes

Intervals

Negative signal

Figure 2: Morphological features extraction: amplitude of the fiducial
points, slopes of the waves, interval width, and negative % of the signal
(To: T offset, Te: T end).

2.3.3. ML pipeline

In the ML pipeline illustrated in Figure 3, we first ap-
plied median imputation to handle missing values, fol-
lowed by z-score standardization. Class imbalance was
addressed by random undersampling of the majority class.
Feature selection was then performed using the same
model as estimator, with the selection threshold optimized
through grid search.

Different classifiers were tested within this pipeline, in-
cluding Random Forest, Gradient Boosting, Logistic Re-
gression, and Support Vector Machines (SVM). Their hy-
perparameters were tuned inside nested cross-validation (5
outer and 3 inter loops), and the model achieving the best
performance across folds was selected for submission to
the official phase. This final model was then retrained on
the full training dataset before submission.

3. Results

The different performances of the two approaches dur-
ing the different phases of the challenge are summarized in
Table 1.

3.1. Internal Validation

On internal hold-out validation derived from the pub-
lic training data, the ResNet achieved a Challenge score of
0.723. Among the machine learning classifiers tested, Gra-
dient Boosting provided the most stable performance with
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Figure 3: Methodological steps of the machine learning pipeline.

a score of 0.486, while Random Forest, Logistic Regres-
sion, and SVM performed slightly lower.

3.2. Unofficial Phase

In the unofficial phase, only the ResNet was submitted.
It achieved a score of 0.566, ranking 20th on the public
leaderboard. This decrease compared to internal validation
reflected a first indication of dataset heterogeneity between
the public training set and the hidden validation cohorts.

3.3. Official Phase

In the official phase, both methods were evaluated on
the hidden test set consisting of additional strongly labeled
clinical data. The ResNet’s performance dropped to 0.061,
while the Gradient Boosting pipeline achieved 0.088. Al-
though both scores were low, the slightly higher perfor-
mance of the feature-based method suggests that inter-
pretable biomarkers may provide some resilience against
dataset variability, even if overall generalization remained
limited.

Table 1: Performance of deep learning (ResNet) and feature-based ML
(Gradient Boosting) across internal, unofficial, and official phases of the
Challenge.

Method Internal | Unofficial | Official
DL (ResNet) 0.723 0.566 0.061
ML (Gradient Boosting) 0.486 - 0.088




4. Discussion

Both approaches demonstrated encouraging perfor-
mance on internal validation data, but results deteriorated
in the official phase. The ResNet, competitive during the
unofficial phase (0.566), fell to 0.061 on the official test
set. The ML pipeline, though not tested in the unofficial
phase, achieved a slightly higher score of 0.088.

This gap underscores the fundamental difference be-
tween challenge phases. The unofficial leaderboard re-
flects performance on a hidden validation set similar in
distribution to the public training data, whereas the official
phase evaluates true generalization: the ability to handle
unseen, heterogeneous datasets with strong serological la-
bels collected in different clinical contexts. Both our mod-
els, like many others, struggled to adapt to this distribution
shift.

Several factors likely contributed to the performance
drop: reliance on weak labels in the large CODE dataset,
which may have introduced noise during training; dataset
heterogeneity in sampling rates, recording durations, and
comorbidities; and the intrinsic difficulty of the task itself.
In fact, some patients with serologically confirmed Chagas
disease do not present detectable abnormalities on the ECG
[1], making classification particularly challenging even for
robust models.

The feature-based approach suggests a degree of robust-
ness linked to clinically interpretable biomarkers such as
intervals and slopes, whereas the ResNet can automatically
learn complex waveform morphology. Both paradigms
bring complementary advantages, but each is also limited
by the heterogeneity of real-world data and the fact that not
all positive cases manifest at the cardiac level.

Future work should focus on bridging these strengths by
combining deep and feature-based models, integrating do-
main adaptation strategies, and leveraging semi-supervised
approaches to mitigate the impact of weak labels. Rep-
resentation learning may also enable relabeling and im-
proved dataset curation, which are crucial for building
models that truly generalize across sources.

5. Conclusion

We proposed two complementary approaches for ECG-
based screening of Chagas disease: a deep residual net-
work and a feature-based Gradient Boosting pipeline. Both
performed well on internal validation, but their scores
dropped in the official phase (0.061 and 0.088 respec-
tively). This reflects the fact that the official phase tests
true generalization, requiring robustness to unseen, hetero-
geneous, and strongly labeled datasets. Beyond method-
ological considerations, it is important to note that not
all patients with serologically confirmed Chagas disease
present with ECG abnormalities, which inherently limits

the performance ceiling of ECG-based approaches. These
findings therefore underline both the clinical and technical
challenges of this task, and highlight the need for strate-
gies resilient to domain shift and label noise, as well as for
integration with complementary diagnostic modalities.
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