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Abstract

We present a modular neural architecture for multilead
ECG lead decomposition that separates inter-lead depen-
dencies of the eight independently collected leads (I, II,
V1, V2, V3, V4, V5, and V6), in three successive stages.
The first stage generalizes the Dower transform via a lin-
ear least squares (LS) approach to estimate each lead from
the others. The second stage employs a multilayer percep-
tron (MLP) to capture nonlinear residuals not captured by
the LS stage. Finally, a recurrent neural network (RNN)
is used to model temporal structure in the MLP residuals.
These stages are additive, with each layer refining the re-
construction of the target lead. Trained and evaluated on
the PTB-XL dataset, the model shows consistent improve-
ments in signal-to-noise ratio (SNR) across all stages. The
best reconstruction was achieved for the precordial leads,
with V5 showing the highest average SNR of over 16 dB.
The architecture can serve as a building block for ex-
plainable ECG foundation models, automatic diagnostic
pipelines, feature encoders, or compression, with applica-
tions in noisy/missing lead recovery and low-dimensional
ECG reconstruction.

1. Introduction

The 12-lead ECG, the clinical standard for cardiac diag-
nosis, captures the cardiac electrical activity from different
anatomical landmarks, enabling a multi-view of the heart
and detection of abnormalities like ischemia and arrhyth-
mias [1–4]. However, the complex interplay of shared
versus lead-specific components of multi-lead ECGs re-
mains underexplored. Although 12-lead ECGs provide
complementary views of cardiac activity, their components
are both redundant—due to shared physiological origins—
and unique, reflecting each lead’s anatomical orientation
[5, 6]. Hypothetically, disentangling the shared informa-
tion across leads from unique, lead-specific patterns, could
enable more efficient and interpretable representations for
algorithmic diagnosis, waveform recovery and signal com-

pression.
In this work, we introduce a compact, modular neural

network architecture for ECG lead reconstruction, using a
three-stage cascade pipeline that decomposes shared and
lead-specific information while preserving interpretability.
The first stage employs a linear least-squares (LS) model,
extending the Dower transform [7], to capture dominant
linear correlations across leads. The second stage is a mul-
tilayer perceptron (MLP) that estimates nonlinear residu-
als, modeling complex anatomical and physiological re-
lationships not accounted for by the LS stage. Finally,
the third stage applies a recurrent neural network (RNN)
to capture temporal dependencies in the residual signal,
refining beat-to-beat variations and waveform dynamics.
The additive structure of these stages isolates linear, non-
linear, and temporal contributions. The model is trained
and evaluated on the PTB-XL dataset [8], which con-
tains 21,837 clinically annotated 12-lead ECGs, the model
demonstrates consistent improvements in reconstruction
signal-to-noise ratio (SNR) in each stage. The results con-
firm the significance of the layered approach, which can
be used as building blocks in explainable ECG foundation
models for ECG interpretation pipelines.

Compared to prior work on lead imputation or genera-
tive ECG modeling [6], our focus lies not only in accu-
rate reconstruction but in interpretability and decomposi-
tion. We treat reconstruction as a lens through which the
structure of ECG signals can be disentangled.

2. Methods

An overview of the proposed architecture is shown in
Figure 1. Accordingly, the model reconstructs a target
ECG lead from the remaining leads using a three-stage
residual architecture. Each stage is trained to progressively
refine the estimate of the previous stage by modeling dis-
tinct types of inter-lead dependencies: linear spatial, non-
linear spatial, and spatiotemporal. While the pipeline is
applicable to arbitrary lead combinations, we focus on the
independently collected limb leads (leads I and II) and the
six precordial leads (V1, V2, V3, V4, V5, and V6).



Figure 1. The proposed residual-based iterative model reconstructs a target ECG lead (y) from other leads (X) in three
refinement stages. Stage 1 applies a linear least squares, yielding ỹ(1) with a 4.68 dB average SNR (across all leads).
Stage 2 uses an MLP spatial block to produce ỹ(2) with 7.20 dB average SNR. Stage 3 employs an RNN spatio-temporal
block, giving ỹ(3) with 7.29 dB average SNR, demonstrating progressive enhancement across stages.

2.1. Linear Least Squares

The first stage uses a linear least squares (LS) regres-
sion to estimate the target lead as a weighted combina-
tion of the remaining leads. Formally, given the matrix
X ∈ R(L−1)×T representing (L − 1) ECG leads over T
time steps, we solve for wLS ∈ R1×(L−1) that minimizes

∥y −wLSX∥22, (1)

where y ∈ R1×T is the target ECG lead and ∥ · ∥2 denotes
the Euclidean (ℓ2) norm. This stage generalizes the classi-
cal Dower Transform [7], which maps vectorcardiographic
Frank leads to the 8- or 12-lead system. This stage captures
dominant linear correlations, serving as a first-order linear
approximation for the shared information between leads.

2.2. Nonlinear Least Squares with Multi-
layer Perceptron

While the LS projection in Stage 1 captures coarse lin-
ear inter-lead relationship, it cannot model nonlinear re-
lationships. To address this, the second stage of the pro-
posed architecture is a multilayer perceptron (MLP). For
each time point t, the MLP receives xt ∈ RL−1 (i.e., the
values of the other leads at the same time step) and pre-
dicts a nonlinear correction to the residual r(1)t = yt− ŷ

(1)
t

from the first stage. Formally, the MLP learns a function
fMLP : RL−1 → R that minimizes the following objective:

min
θMLP

T∑
t=1

(
yt − ŷ

(1)
t − fMLP(xt; θMLP)

)2

, (2)

where θMLP are the MLP parameters. This formulation is
structurally analogous to the linear least squares step in
Stage 1, but with the added capacity to model nonlinear



spatial dependencies between the leads. The output of this
stage is an updated prediction ŷ(2) = ŷ(1) + fMLP(X) that
incorporates nonlinear refinements to the initial approxi-
mation.

2.3. Temporal Modeling using Recurrent
Neural Network (RNN)

The third stage models temporal dependencies in the
residual signal that remain after the spatial modeling in
Stage 2. Let r(2) = y − ŷ(2) denote the residual af-
ter the linear (LS) and nonlinear (MLP) steps. To cap-
ture temporal dependencies, we employ a recurrent neu-
ral network (RNN) that learns to predict a residual cor-
rection term based on a temporal window around each
time step. While the temporal window may generally be
causal or non-causal, we use a non-causal window here:
for each target time step t, a window of s input signal
xt−s:t+s ∈ R(L−1)×(2s+1) is extracted and passed to the
RNN. The network uses this bidirectional approach to pre-
dict a correction term for the center point of the window,
refining the lead reconstruction at time t. This step cap-
tures local temporal dynamics while avoiding information
leakage from global sequence-level patterns, beyond the
window 2s + 1. Importantly, while the LS and MLP
stages were instantaneous and agnostic to the sampling fre-
quency, the RNN stage is sampling rate dependent.

Formally, the RNN learns a function fRNN with parame-
ters θRNN that minimizes the temporal residual loss:

min
θRNN

T∑
t=1

(
yt − ŷ

(2)
t − fRNN(xt−s:t+s; θRNN)

)2

. (3)

After applying the RNN correction, the final model output
is given by:

ŷ
(3)
t = ŷ

(2)
t + fRNN(xt−s:t+s).

2.4. Final Reconstruction

The final estimate of the target lead is computed as the
cumulative sum of the outputs from all three stages:

ŷ
(3)
t = ŷ

(1)
t + fMLP(xt) + fRNN(xt−s:t+s), (4)

This layered, residual reconstruction approach enables in-
terpretable decomposition of ECG dynamics by disentan-
gling the contribution of linear, nonlinear and temporal
structure. Each stage is modular, additive, and designed
to capture what the previous step could not recover.

3. Results

We evaluate the model on the PTB-XL dataset using 5-
fold cross-validation, quantifying reconstruction fidelity of

Figure 2. Signal-to-Noise Ratio (SNR) for lead recon-
struction across the eight directly measured ECG leads (I,
II, V1–V6) at three stages of the pipeline: Stage 1 (LS),
Stage 2 (LS + MLP), and Stage 3 (LS + MLP + RNN).
Boxplots summarize the SNR variability across the left-
out validation set.

each stage in terms of signal-to-noise ratio (SNR). We re-
port per-lead SNR at each stage. In each fold, all evalua-
tions are conducted on the held-out set. Robustness is as-
sessed by reporting the standard deviation across the folds.

Table 1 and Figure 2 summarize the results. Accord-
ingly, the three-stage architecture yields consistent SNR
improvements across all ECG leads. The LS stage cap-
tures major inter-lead correlations, the MLP enhances
performance by modeling nonlinear spatial dependencies,
and the RNN adds temporal refinement. Figure 1 illus-
trates this progression on a target lead: Stage 1 captures
the overall waveform but distorts high-frequency compo-
nents, Stage 2 improves spatial alignment and improves
the SNR to 7.20 dB, and Stage 3 further refines temporal
details, yielding a final SNR of 7.29 dB. Overall, the model
achieves a 7.29 dB in SNR from Stage 1 to Stage 3, high-
lighting how successive stages refine both morphology and
temporal fidelity.

Reconstruction accuracy varies across leads, reflecting
differences in spatial redundancy. Limb leads I and II
are generally more difficult to recover, indicating greater
lead-specific information that is harder to infer from oth-
ers. Among the precordial leads, V4 and V5 consistently
achieve the highest SNRs, with V5 reaching 16.16 dB
after Stage 3. This confirms our hypothesis that lead-
specific components—irrecoverable from other views—
correspond to lower reconstruction SNRs and carry unique
diagnostic value.

4. Discussion

The results demonstrate that ECG leads can be effec-
tively reconstructed from one another using a structured,
multi-stage model that progressively captures linear, non-



linear, and temporal dependencies. The consistent im-
provement in SNR across stages confirms the significance
of the modular design: each stage contributes unique ex-
planatory power by modeling what the previous stage fails
to capture. In particular, the final RNN stage—though rel-
atively simple—adds temporal refinement that proves use-
ful for capturing temporal dynamics.

From a machine and deep learning standpoint, the key
significance of the proposed model is the explicit decom-
position of ECG leads into shared (redundant) and spe-
cific (non-redundant) components, which enables its us-
age as a signal decomposition block in more sophisticated
architectures such as ECG foundation models used for
algorithmic diagnosis. The per-lead reconstruction anal-
ysis confirms that certain leads (e.g., V3, V4, V5) are
more redundant and predictable from others, while oth-
ers (e.g., the limb leads I, II) carry more unique informa-
tion. These differences align with anatomical expectations:
mid-precordial leads lie closer to the heart and often share
more “near-field” signal structure, whereas limb leads cap-
ture orthogonal “far-field” characteristics. This approach
to ECG decomposition provides a principled way to rea-
son about lead importance and opens the door to lead se-
lection/prioritization and feature extraction, in diagnostic
pipelines.

These findings have multiple implications. First, iden-
tifying leads with low redundancy can guide lead selec-
tion for wearable or mobile ECG devices, where hard-
ware constraints prevent full 12-lead acquisition. Second,
shared and specific components may respond differently to
pathological changes—providing new waveform features
for disease detection and interpretation. Finally, by quanti-
fying inter-lead predictability, the model can support more
efficient ECG compression strategies where only the most
informative leads are stored or transmitted. The proposed
architecture may also be combined with more generic neu-
ral network architectures, or used as building blocks in
ECG foundation models. This makes the model a valuable
building block for pretraining or diagnostics, extending be-
yond lead reconstruction.

5. Conclusion

We proposed a modular, three-stage neural network for
ECG lead reconstruction and shared versus lead-specific
information separation, capturing linear, nonlinear, and
temporal inter-lead dependencies through residual learn-
ing. This approach decomposes leads into common and
unique components, helping with lead reconstruction and
interpretability. Experiments on the PTB-XL dataset
showed consistent SNR improvements, confirming lead re-
dundancy and uniqueness, with applications in ECG com-
pression, lead selection for hardware-constrained devices,
and interpretable representation learning. Future work

Table 1. Mean SNR (± std) over 5 folds for different mea-
sured ECG leads (in dB). Note the progressive improve-
ment from Stage 1 to 3, and varied performance across
leads.

ECG Lead Stage 1 (LS) Stage 2 (MLP) Stage 3 (RNN)
I 6.54 ± 0.05 7.82 ± 0.04 8.22 ± 0.04
II 5.32 ± 0.04 6.97 ± 0.05 7.33 ± 0.07
V1 8.74 ± 0.13 9.30 ± 0.07 9.68 ± 0.08
V2 10.09 ± 0.11 11.00 ± 0.08 11.25 ± 0.08
V3 12.17 ± 0.10 12.73 ± 0.05 12.92 ± 0.09
V4 13.71 ± 0.08 14.89 ± 0.09 14.93 ± 0.13
V5 15.09 ± 0.10 16.11 ± 0.07 16.16 ± 0.06
V6 13.17 ± 0.24 14.20 ± 0.05 14.39 ± 0.06

may extend this model to diagnostic tasks and link lead-
specific residuals to disease biomarkers.
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