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Abstract

The morphology of arterial pulse waveforms evolves
with age, reflecting structural and functional changes in
the cardiovascular system. Thus, vascular age is a valu-
able surrogate of cardiovascular health, and premature
vascular ageing can indicate increased cardiovascular
disease risk. Pulse wave analysis could support risk strati-
fication in otherwise asymptomatic adults. We transformed
pulse wave time-series data from photoplethysmography
(PPG) and arterial tonometry signals into images, using
Symmetric Projection Attractor Reconstruction (SPAR).
We trained a convolutional neural network on SPAR im-
ages to distinguish between healthy subjects aged 35–40
and 50–55. The model demonstrated consistent classifica-
tion performance on internal and external test sets, achiev-
ing F1 scores above 70% across different age ranges in
both PPG and tonometry signals. These results suggest
that SPAR-images from pulse waves contain discrimina-
tive features, even among healthy adults close in age. This
proof-of-concept lays the groundwork for future research
into the use of SPAR for early risk detection using smart
wearables.

1. Introduction

Vascular Ageing (VA) is a complex process that involves
the gradual deterioration of arterial structure and func-
tion over time, negatively impacting organ function [1].
The gold-standard measurement for VA is carotid-femoral
pulse wave velocity, but this requires trained personnel and
is not routinely clinically available [2]. In healthy ageing,
chronological and vascular age typically correspond [3].

Early detection of premature VA is critical for the
timely identification and treatment of cardiovascular dis-
ease (CVD), which remains a leading global health burden.

Non-invasive signals from photoplethysmography (PPG)
or tonometry can help assess vascular age, by analysing the
shape of the pulse wave, which changes with age due to ar-
terial stiffening. PPG is an optical method used in clinical
and wearable devices to measure pulse waves at sites like
the wrist and finger [4]. Arterial tonometry, mainly used
clinically, measures pressure from superficial arteries such
as the radial or carotid [5]. By comparing signal-based
estimates of vascular age to a person’s chronological age,
we hypothesised we could identify early VA in community
based settings.

This study focuses on image-based age classification
leveraging PPG and tonometry-derived pulse waveforms,
targeting two narrow yet clinically significant age cohorts
(35–40 and 50–55 years), during which individuals may
begin to manifest subclinical CVD risk. Pulse waves were
converted into images using the Symmetric Projection At-
tractor Reconstruction (SPAR) method, which condenses
time-series data into a single image [6]. These images
were used to train a Convolutional Neural Network (CNN)
to classify age, assigning each unseen image to the most
likely of the two classes (≤40 or ≥50).

2. Methods

2.1. Datasets

The datasets used in this study were Round 1 data from
the Asklepios Study and the Vortal dataset (Table 1).
Both datasets comprised recordings from participants free
from a CVD diagnosis at study initiation, collected in the
supine position. The Asklepios Study [7] includes 2,524
individuals (30–59 years, 52% female) randomly sampled
from two twinned Belgian communities. The exact age of
each participant was labelled. Arterial tonometry wave-
forms (20 s, 200 Hz) were acquired at a single centre by



Figure 1. Full pipeline adopted in this study. Section a) illustrates the SPAR pipeline, which processes a raw signal into
a SPAR attractor image (density plot). Section b) illustrates the CNN pipeline, where CNN takes as input the density plot
and gives as output a class label.

one operator using the same device. The Vortal dataset [8]
contains finger PPG recordings from 56 subjects: 40 la-
belled as ’Young’ (18–35 years, 53% female) and 16 as
’Elderly’ (70+ years, 56% female), collected in a London
clinical trials unit (approx. 10 min per subject, 125 Hz).

2.2. Data selection

From the original Asklepios population, a subgroup was
considered for this study. We included only participants
aged 30-40 and 50-59. Obese subjects (BMI≥30 kg/m2)
and those with high blood pressure (systolic≥140 mmHg
or diastolic≥90 mmHg) were excluded, in keeping with
the 2024 ESC guidelines for hypertension classification
[9]. For the Vortal dataset, we used the whole cohort, as
no metadata was available. The final population composi-
tion, all of which were assumed to be healthy, is shown in
Table 2.

Table 1. Population composition for each dataset consid-
ered in this study.

Asklepios Vortal
No. of participants 2,524 56
Sex (M/F) 1,223/1,301 27/29
Age range 30-59 18-35,70+
Signal type Tonometry PPG
Raw signal length 20 s 10 min
Analysed signal length 20 s 20 s

Table 2. ’Total’ and ’Selected’ number of subjects in the
Asklepios and Vortal datasets, along with the number of
SPAR images used in each group.

Cohort Total Selected Images
Asklepios 30-34 15 12 12
Asklepios 35-40 456 341 341
Asklepios 50-55 514 251 251
Asklepios 56-59 160 77 77
Vortal 18-35 40 40 1302
Vortal 70+ 16 16 528

2.3. Symmetric Projection Attractor Re-
construction (SPAR) method

The SPAR method [6] is a non-fiducial points based
method that combines mathematics and cardiovascular
physiology to quantify morphological features and wave-
form variability. Given a raw pulse wave signal, the av-
erage cycle length is computed for the time length of the
window selected. Next, a three-dimensional (3D) attractor
is generated using three delay coordinates a distance of one
third of the average cycle length apart. The 3D attractor is
then projected onto a 2D plane normal to the unit vector
and converted into a density plot (Figure 1a). This plot is
the final attractor image used to train and validate CNNs in
this work.
For the Asklepios Study dataset, we used one 20-second
segment per subject, resulting in one attractor image per
participant. For the Vortal dataset, we extracted multiple
non-overlapping 20-second segments from the 10-minute



Figure 2. Examples of a single pulse wave and the correspondent SPAR attractor image, generated using 20s of data, for
tonometry and PPG data.

recordings, generating around 30 images per subject.

2.4. Model and metrics

The CNN considered in this study is a relatively simple
architecture, designed after the TinyVGG originally pre-
sented by Wang et al. [10]. It comprises two main blocks
and a final classification layer, as shown in Figure 1b.
Model performance was evaluated using sensitivity (TP /
(TP + FN)), specificity (TN / (TN+FP)) and the F1 score,
which is the harmonic mean of precision (TP / (TP + FP))
and sensitivity; with TP being the true positives, TN the
true negatives, FP the false positives and FN the false neg-
atives. In the context of this study, the positives were the
50-55 years class, the negatives the 35-40 years. There-
fore, sensitivity measures the model’s ability to assign a
test subject who is 50 or older to the correct class, while
specificity measures the model’s ability to correctly clas-
sify those that are 40 or younger.

2.5. Training and testing

The model was trained on 80% of the Asklepios data
from age groups 35-40 and 50-55. Of the remaining data
from these groups, 10% was used as validation set and 10%
as test set. Given the relatively small size, 10-fold cross-
validation was performed to improve robustness, thus ob-
taining 10 different sets of model weights which were eval-
uated separately when testing. The model was then tested
on different test sets, reported in Table 2. The division in
10 different test sets was maintained when testing on the
larger Asklepios population, to avoid bias. The Vortal test
remained constant across evaluations.

3. Results

The model reached F1 scores of least 70%, with sen-
sitivity >67% and specificity >79% across all test sets

Table 3. Model performance on different test sets.

F1 score (%) Sens (%) Spec (%)
Test Asklepios 70.9 ± 8.6 67.0 ± 12.3 85.0 ± 6.3
35-40 and 50-55
Test Asklepios 79.3 ± 2.0 70.5 ± 3.1 84.3 ± 4.8
30-40 and 50-59
Test Vortal 72.8 ± 2.5 86.9 ± 5.9 79.0 ± 2.0

(Table 3). Performances generally improved with larger
test sets and broader age ranges (Table 2), suggesting good
generalisation. Higher sensitivity in these sets indicates
a more accurate classification of older subjects. Addi-
tionally, standard deviations decreased with broader test
sets, reflecting more consistent performance across cross-
validation folds.

Evaluation on PPG signals showed improved F1 scores
compared to the baseline test on the Asklepios dataset, to-
gether with an increase in sensitivity and a slight decrease
in specificity. This highlights the ability of the model,
combined with the SPAR method, to detect age-related
morphological changes across both signals. Figure 2 il-
lustrates these morphological differences. In younger in-
dividuals (35-40 for tonometry, 18-35 for PPG), distinct
second peaks in both signals, result in SPAR attractors
with “looped” edges and closed centres. In older age
groups (50-55 for tonometry, 70+ for PPG), the second
peak is attenuated or absent, producing more open attrac-
tors with reduced looping, highlighting age-related wave-
form changes.

4. Discussion and conclusion

We have presented a simple model that can classify
chronological age in a healthy population with no CVD
diagnosis, using two non-invasive pulse wave signals. We
purposefully selected healthy individuals in this analy-



sis, such that chronological age was expected to closely
match vascular age. Good classification performances in
the larger tonometry and PPG test sets showed that both
pulse wave types contained enough information in their
shape to distinguish between the two age groups. Our
analysis therefore detected changes in the cardiovascular
system that underline those morphological differences be-
tween subjects of different ages.

It is relevant to note that the presence of noise in tonom-
etry recordings (Figure 2) did not impact the final attractor
quality, when compared to the PPG-attractors, suggesting
the SPAR method to be invariant to this noise.

The main limitation of this work lies in the small size
of the training set, which was addressed by doing 10-
fold cross validation to increase the robustness of the re-
sults. Furthermore, the sub-selection criteria applied to the
Asklepios dataset could not be applied to the Vortal dataset
due to the absence of detailed age-related metadata on the
population. As a result, it is possible that individuals with
high blood pressure or a BMI of over 30 were present in
the Vortal dataset. However, given the large age difference
between the younger and older groups, Vortal was deemed
a suitable proof-of-concept PPG test set for age classifica-
tion.

Model performance could be increased by implement-
ing a more complex CNN model and using a larger popu-
lation as a training set. This would allow for evaluation of
the interplay between model complexity and performance.
Whilst CNNs could be applied to raw pulse waves signals
themselves, SPAR’s robustness on noisy signals and at-a-
glance summary of multiple pulse waves as a single 2D
image may be more intuitive for end users for visual inter-
pretation.

In summary, while age-related differences in pulse wave
morphology are well established, we present a simple
SPAR-based CNN model that classifies individuals into
two closely spaced age groups within a CVD-free popu-
lation. We further show tonometry and PPG signals are
sufficiently related for this task. Given the infrastructure
demands of gold-standard pulse wave velocity measure-
ments for VA classification, our findings support further
research into the use of SPAR with community-worn PPG
devices for the detection and stratification of cardiovascu-
lar risk.
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