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Abstract

Electrocardiogram (ECG)-based age prediction has
emerged as a promising tool in medical Al, providing in-
sights into physiological aging and potential health risks.
While existing deep learning models have shown strong
performance on adult populations using 10-second ECG
recordings, their applicability to pediatric subjects re-
mains largely unexplored. In this study, we investigated
a transfer learning strategy for pediatric age estimation
using ECGs, starting from a model pre-trained on adult
data. Specifically, we first trained a convolutional neu-
ral network on single heartbeats from adult ECGs taken
from the PTB-XL database, and then, we fine-tuned it on
pediatric ECGs collected at the Buzzi Children Hospital,
Milan, Italy. Our model achieved a RMSE of 10.32 years
and a MAE of 8.03 years on adult data, which were found
comparable to prior works trained on longer segments of
ECG signals. In the pediatric dataset, the model achieved
a RMSE of 2.67 years and a MAE of 1.88 years. These
results suggest that meaningful age-related features can
be extracted even from single heartbeats and that transfer
learning enables effective adaptation across age groups,
offering a practical solution for pediatric age estimation
or in other contexts where available data might be typi-
cally more scarce.

1. Introduction

Amplitude and duration of waveforms, as measured on
the electrocardiogram (ECG), are known to be affected by
age. This phenomenon was leveraged to estimate the func-
tional age of the heart, using modeling techniques ranging
from statistics [1] to Deep Learning (DL) [2, 3]. Large
differences between the functional and chronological age

(>7 years) of the patients, estimated through neural net-
works, were found associated with higher risk of mortal-
ity [3] or cardiovascular comorbidities [2]. A review on
the topic can be found in [4]. While existing studies have
demonstrated the clinical relevance of ECG-based age pre-
diction in adults, their applicability to pediatric popula-
tions remains largely unexplored. Adapting these mod-
els to younger age groups could enhance diagnostic and
prognostic capabilities, providing developmental monitor-
ing and early detection of heart conditions. However, pe-
diatric ECGs present unique challenges due to rapid age-
related changes in morphology, hormonal shifts, and the
maturation of the cardiac conduction system. These fac-
tors complicate the development of reliable age predictors
for younger patients. So far, only a few Al models have
been specifically developed for pediatric ECGs. A recent
example is the work of Dutenhefner et al. [5], who pro-
posed a ResNet-based model for pediatric age regression,
demonstrating that error in age estimation > 2.5 years
were linked to underlying pathologies. A further signifi-
cant challenge is the usually limited availability of pedi-
atric ECG data.

In this study, we investigated the potential of transfer
learning (TL) to adapt a DL model trained on adult ECGs
for pediatric age estimation. We first trained an age regres-
sor on adult ECG data and then fine-tuned it on pediatric
ECGs using TL. The model was trained on single 12-lead
heartbeats.

2. Methods

2.1. Dataset and preprocessing

Two different datasets were employed in the study.
ECGs of adult subjects (“AD”) were obtained from the
PTB-XL ECG dataset [6, 7], which includes standard 12-
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Figure 1: Distribution of the QRST windows (heartbeats) used across different ages, as obtained for the study from the
PTB-XL dataset (AD, panel a) and the Buzzi Children’s Hospital pediatric ECG dataset (PE, panel b).

lead 10-second ECGs, sampled at 100 Hz, from 18,885
different patients. We selected a subset of 6, 776 ECGs of
healthy patients, reported as in normal sinus rhythm with
at least 80% confidence, and spanning an age range 18 —89
years. A second pediatric dataset (“PE”) was instead col-
lected at the Buzzi Children’s Hospital in Milan, Italy. A
total of 54,399 standard 12-lead 10 seconds ECGs were
digitally collected between 2011 and 2022 (sampling rate
500 Hz) from healthy children between O to 15 years.

Given that the PE data were sampled at a higher rate,
we subsampled each pediatric ECG to 100 Hz. For both
PE and AD data, we applied a zero-phase, order-3 Butter-
worth band-pass filter with low and high cutoff frequen-
cies of 0.5 Hz and 40 Hz, respectively. Then, we identi-
fied the heartbeats using the ggrs detector included in the
WEDB library [7, 8]. Lastly, we divided each of the PE and
AD signal into QRST windows of duration 0.43 s, ranging
from -60 ms to 370 ms relative to each detected R peak.
The data in the PE dataset were collected in a pediatric
hospital and therefore, due to clinical practice, around half
the patients are under 1 year and the population is in gen-
eral skewed towards younger ages. Given the fact that in
this work the focus is on verifying how effectively trans-
fer learning is capable of adapting an age regressor model
from a large adult population to a smaller pediatric popu-
lation, we downsampled each pediatric age group to about
2,200 QRST windows, roughly matching the maximum
class size in the AD dataset. Overall, the total number of
QRST windows extracted were 72,420 for AD, and 35,080
for PE. Figure 1 shows their number across age. For train-
ing the DL models, the set of QRST windows for each of
AD and PE was split roughly into 90% for training and
10% for testing, with stratification, ensuring that beats be-
longing to the same patients were contained entirely within
one of the splits.

2.2. Regression models & transfer learning

The problem of age estimation was framed as a regres-
sion task, where the target variables were integer-valued
ages (for coherence with the the PTB-XL ECG where only
integer-valued ages are available). The DL model con-
sisted into two convolutional blocks, each made by a 2-d
convolutional layer (Conv2d), a batch normalization layer
(BatchNorm2d), a leaky relu (LeakyReLu) activation func-
tion, a max pooling layer (MaxPool2d), and a dropout
layer (Dropout2d). The output was then set in input to
another convolutional block, and then to a series of fully
connected layers (Linear layer - ReLU activation - Dropout
layer - Linear layer - ReLLU activation - Linear layer) which
had as output a single value for the predicted age. The
input of the network was a 43 x 12 matrix, that is a sin-
gle ECG QRST window (12 leads of 0.43 s). A scheme
of the model is shown in Figure 2. As loss function, we
used the mean squared error between the predicted age and
the known age. The model was trained on the PTB-XL
train dataset (65,166 QRST windows or heartbeats). The
training went on for 15 epochs, with a batch size of 32
and a learning rate of 10~*. Adam optimizer was config-
ured with hyperparameters 3 = (0.9,0.999), ¢ = 1078,
weight_decay = 1073,

To establish whether the model architecture was suffi-
ciently effective, we also retrained for comparison on the
same AD training set the models proposed in [2] and [3],
and compared their performance with our model. The
models described in [2] and [3] were here adapted to ac-
cept in input a single heartbeat instead of 10-second ECG
signals, as originally proposed.

After training the age regressor on the adult population,
we transferred the learned features to pediatric ECGs using
transfer learning. Specifically, we fine-tuned the entire net-
work without freezing any parameters. The training pro-
cess involved 31,629 QRST windows from the PE training
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Figure 2: Architecture of the DL age regressor model.

dataset and it was conducted for 3 epochs, with a batch
size of 16 and a learning rate of 2 - 1075, to ensure that the
network’s previously acquired knowledge was effectively
retained and adapted to the new data.

3. Results

In order to evaluate the goodness of the predictions of
our age regression model, we selected the mean absolute
error (MAE), the root mean square error (RMSE) and the
Pearson correlation coefficient (p) between the predicted
ages and the actual age. Specifically, on the PTB-XL test
set (7,254 QRST windows), we quantified a MAE of 8.03
years, a RMSE of 10.32 years and a p of 0.77. A scatter-
plot showing the real and predicted ages on the adults test
set against the main diagonal line (perfect prediction, in
red) is shown in Fig. 3(left). Table 1 reports the compari-
son between p and RMSE values of our age regressor and
those of Attia et al.’s and Lima et al.’s models trained and
tested on the same AD data. After the transfer learning,
the DL regressor proposed in this study achieved a MAE
of 1.88 years, a RMSE of 2.67 years and a p of 0.84 on
the pediatric test set (3,451 signals). The scatterplot of the
corresponding actual vs. predicted ages is reported in Fig.
3 (right).

4. Discussion

The DL model proposed in this study, when trained
on single 12-leads heartbeats from the PTB-XL dataset
achieved a good predictive performance over a 71-year age
range, which we considered acceptable. Prediction errors
were more pronounced above 75 years (underestimation),
likely due to data scarcity in the dataset for this age range
(Fig. 1a).

Despite previous studies suggested that heart rate vari-
ability might be a relevant features for age prediction [1],
our model was able to capture meaningful age-related pat-
terns using only ECG data. In addition, the model achieved
results in line with previous studies using DL for the same
task on adults. In fact, despite using only ECG data com-
ing from a single heartbeat, our model reached a MAE of
8.03 years, while Attia et al. [2] and Lima et al. [3] re-

Table 1: Performance comparison between the age predic-
tor proposed in Attia et al., Lima et al. and in this study,
when all models are trained and tested on the AD dataset.

Model Testing Loss (y)? p RMSE (y)
This study 106.57 0.77 10.32
Attia et al. [2] 116.40 0.75 10.79
Lima ez al. [3] 108.00 0.77 10.39

ported MAEs of 6.9 and 8.38 years, respectively, using all
the 10 s of diagnostic ECGs. Moreover, when we retrained
these architectures on the same dataset, the performances
of the three models became undistinguishable, as shown in
Table 1. This suggests that the information learned in these
DL models are mainly associated with the characteristics
of the ECG waveforms, and not their variability in time.

After fine-tuning the proposed model on the pediatric
ECGs using transfer learning, we achieved a RMSE of 2.67
years and a correlation coefficient p = 0.84 similar to the
adult model, indicating effective adaptation to the younger
age group. This lower RMSE, compared to the adult
model, was consistent with the narrower pediatric age
range (015 years), where smaller errors were expected.
Our model also reached a MAE of 1.88 years, which was
comparable to the 2.65 years reported by Dutenhefner et
al. [5] using entire 10 s ECGs. This seems to confirm
that, even in children, age-related information is mainly
contained in the shapes of the waveform, not their evolu-
tion in time. As shown in the scatterplot in Fig. 3, predic-
tions closely distributes along the main diagonal (in red,
dashed), though a slight underestimation persisted in the
12-15 age range, possibly inherited from the adult-trained
representation of information in the model (not due to the
data imbalance, as the age group were balanced in this
dataset). This effect warrants further investigation.

Overall, the transfer learning approach proved mostly
effective in preserving key features learned from adult
ECGs and adapting them to pediatric data. Retraining on
the PE dataset required only 3 epochs (versus 16 for adults)
and used a dataset roughly half of AD. This efficacy high-
lights the method’s potential in situations with limited data
availability, or in which it is necessary to adapt the model
to new datasets.

Nonetheless, our approach had its limitations. While the
primary aim was to verify whether TL could be used to
obtain a pediatric-specific age regressor from an adult-age
model, a more comprehensive solution would have needed
ECG data spanning the full age range (0—17 years). How-
ever, our PE dataset included too few samples from ado-
lescents aged 16-17, limiting the model’s ability to learn
a proper representation in this age group, which was ex-
cluded by design.
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Figure 3: Scatterplots of the actual subject’s age vs. the predicted age in the adult (left) and pediatric (right) populations.

S. Conclusion

The results we obtained highlight the ability of transfer
learning to adapt a well-functioning model of age regres-
sion from single-beat 12-lead ECG signals, trained on an
adult population, to pediatric age groups, despite the lim-
ited data and the large variability of the pediatric ECG sig-
nals. Possible future works will focus on extending the
model for processing 10 s ECGs (e.g., to also include heart
rate variability in the model), and evaluating the functional
age for cardiac risk prediction in the pediatric population.
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