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Abstract

Chagas disease is a tropical parasitic disease endemic
to South America. Widespread serological testing is im-
possible due to limited capacities. One of the solutions is
to make an initial screening based on electrocardiogram
(ECG) results. To classify Chagas disease, we propose
a multi-branch architecture for Neural Basis Expansion
Analysis for Interpretable Time Series (N-BEATS), pre-
viously used for fast classification of cardiovascular dis-
eases. N-BEATS is rarely used for classification purposes,
but we want to test for what cases it can be a valid solution
and an alternative to other state-of-the-art networks.

Multi-branch architecture allows for better use of the
metadata and signal modifications (like wavelet transfor-
mations or drift removal) while not losing the essential el-
ements of pure ECG signal, making it suited for ’Detection
of Chagas Disease from the ECG: The George B. Moody
PhysioNet Challenge 2025’.

For performance comparison, we show the effects of the
exact modification on two other state-of-the-art networks:
long-short-term memory (LSTM) and convolutional neural
network (CNN).

Our team’s (WEAIT) submissions for NBEATS, LSTM,
and CNN scored 0.068, 0.195, and 0.237, respectively, on
the validation set.

1. Introduction

Chagas disease, caused by the protozoan parasite Try-
panosoma cruzi and transmitted primarily by triatomine in-
sects, remains one of the most neglected tropical diseases,
affecting an estimated 7 million people and causing nearly
10,000 deaths yearly in endemic regions. In the advanced
stages of infection, Chagas disease can lead to the develop-
ment of cardiomyopathy, which may result in heart failure,
arrhythmias, and thromboembolic events, significantly in-
creasing the risk of mortality. While serological testing re-
mains the standard method for diagnosing Chagas disease
and has revealed high prevalence in certain regions, ac-
cess to such testing is often limited. Also, in non-endemic,
high-income countries, where awareness and laboratory-
based serological testing are limited, migrant populations

often go untested and unmonitored, allowing chronic in-
fection to progress silently [1, 2]. As Chagas-related
cardiac abnormalities–like right bundle branch block or
left anterior fascicular block, which correlate with posi-
tive diagnosis – have frequently appeared in electrocardio-
grams (ECGs) over the past decade, electrocardiography
has emerged as a promising, low-cost, widely available
tool for screening chronic Chagas cardiomyopathy [3]. Ex-
ploring the opportunities and challenges related to the clas-
sification of ChD based on the ECG signal was the subject
of the PhysioNet Challenge 2025 [4] to which the research
described in this paper was submitted. Tackling the prob-
lem from an ECG analysis perspective, residual neural net-
works (ResNets) have been employed in order to recog-
nize major signal abnormalities related to chronic Chagas
cardiomyopathy [5]. In this paper, we aim to explore the
possibility of employing a smaller and simpler Neural Ba-
sis Expansion Analysis for Time Series - N-BEATS [6],
embedded within an architecture of multiple independent
branches [7], for the task of automated Chagas disease bi-
nary classification based on a 12-lead ECG signal.

2. Methods

Neural networks are widely employed for the automated
classification of cardiovascular diseases from ECG sig-
nals. Architectures are often based on ResNets, CNNs,
or RNNs, which tend to be relatively complex. To balance
simplicity with interpretability, the N-BEATS network was
selected as the core architecture, as in previous studies, it
has demonstrated performance comparable to widely used
RNNs such as LSTM and GRU [8, 9]. To further exam-
ine the contribution of different signal features and to pro-
vide multiple perspectives on the ECG data, a multi-branch
design was adopted, which has been shown to improve
performance in multiclass CVD classification [7]. The
N-BEATS, tested during the unofficial phase of the chal-
lenge, yielded very promising results–it was scored 17th
(out of more than 173 entries) with a 0.605 challenge score.
The LSTM model in the same multi-branch architecture
achieved a challenge score of 0.294 – which justified con-
tinuing to work with this architecture for the Chagas diag-
nosis problem.



2.1. The N-BEATS model

Neural Basis Expansion Analysis for Interpretable Time
Series (N-BEATS), introduced by Oreshkin et al. in 2019
[6], is a forecasting architecture built on a deep stack of
fully connected layers that use ReLU activations. Each
block predicts basis-expansion coefficients in both the for-
ward (forecast) and backward (backcast) directions, and
the blocks are linked through a doubly residual stacking
scheme; some layers handle backcast and forecast roles si-
multaneously. After a block subtracts its backcast compo-
nent from the input, the residual passes to the next block,
allowing subsequent blocks to model portions of the sig-
nal not yet explained. The architecture presented in Figure
1 shows how layers, blocks, and stacks form the doubly
residual connections. In [8], researchers repurposed N-
BEATS, previously used only for forecasting, for cardiac-
diagnosis tasks and compared it with LSTM and GRU
models. They found comparable performance and particu-
larly strong results when only a few ECG leads were avail-
able.

Figure 1. N-BEATS architecture diagram.

Figure 2. Multi-branch N-BEATS architecture diagram.

2.2. Multi-branch architecture

Building on the multi-branch strategy described in [7],
which integrates six parallel branches, we introduce a
modification to this architecture by simplifying branch ζ.
In this branch, the core network was replaced with a sin-
gle fully connected layer. This design choice reflects the
nature of the inputs: branch ζ processes patient metadata
and general recording statistics, which are less directly re-
lated to the ECG signal than the windowed input data used
in the other branches. Instead of merging domain knowl-
edge, patient information, auxiliary transformations, and
raw ECG signals into a single input stream, each source
is provided to the network independently (see Fig.3). The
resulting model consists of six distinct branches, each with
its own structure and dedicated input (Fig.2). Throughout
this paper, these branches are denoted as α, β, γ, δ, ϵ, and
ζ.

2.3. Preprocessing

The difference in the number of representatives between
the positive and negative classes was vital to the challenge,
as negative cases heavily outnumbered positive ones. Be-
cause disk space was limited to 100GB, we had to re-
frain from using all records available, as the size of the
created HDF5 database exceeded the limit. In order to
build a training and test dataset, a random pre-selection
of records was performed to reduce their number. All
records from the SaMi-Trop dataset were incorporated,
from CODE-15% and PTB-XL, only 5% and 10%, respec-
tively; randomly selected records were taken into consider-
ation. All data was split in a 2:1 ratio between the training
and test datasets, ensuring the positive label ratio between
the datasets is also 2:1. Established approaches from re-
cent state-of-the-art studies were incorporated as inputs to
the individual architectural branches. In each branch, the
raw ECG signal was subjected to a denoising stage imple-
mented through wavelet thresholding. For this purpose,
the Daubechies wavelet was employed, as it remains the
most widely adopted basis for ECG signal denoising [10].
The wavedec method from the PyWT library was employed
to extract the corresponding wavelet coefficients. Subse-
quently, a robust median estimator of the standard Gaus-
sian noise level was computed and utilised to determine the
Bayesian Shrink threshold [11]. This thresholding proce-
dure was applied to the detail coefficients obtained in the
initial wavelet decomposition, after which the signal was
reconstructed from the modified coefficients. All signals
were resampled to a unified target frequency of 400 Hz
to ensure consistency across datasets, as most data comes
with said sampling rate. For recordings sampled at fre-
quencies other than 400 Hz, resampling was performed
using the resample function from the scipy.signal



library, which applies Fourier-based interpolation to ob-
tain uniformly spaced samples at the desired target fre-
quency. Given the diagnostic importance of the temporal
region surrounding the R-peak in identifying cardiovascu-
lar diseases (CVDs) [12], an R-peak detection algorithm
was employed to guide signal segmentation. In the present
study, the widely adopted Pan-Tompkins algorithm [13]
was implemented to perform both R-peak detection and
subsequent segmentation. Following detection, the ECG
recordings were partitioned into windows of 3s in duration,
each comprising 1 s of signal preceding the R-peak and 2 s
following it. As illustrated in Figure 3, the inputs to the
β, γ, δ, and ϵ branches were derived by first eliminating
baseline drift from the denoised ECG signal. The base-
line component was estimated using the SNIP algorithm,
and the signals were subsequently re-centred by subtract-
ing this estimate, thereby normalising them to a zero-line
baseline. ζ input differs from others as it expresses basic
patient-related features based on the information from the
header file; we extract age and sex, which are later one-
hot-encoded. Additionally, the signal mean and standard
deviation are extracted for all leads.

Figure 3. Diagram of ECG Signal preprocessing flow
from data read to forming branch inputs.

2.4. Training and Hyper-Parameters

Throughout the training phase, a range of network hy-
perparameters, as summarized in Table 1, was systemat-
ically evaluated. The configurations highlighted in bold
demonstrated superior performance across the conducted
experiments and were therefore identified as the most ef-

fective settings. These selected hyperparameters were sub-
sequently adopted as the parameters of choice for the ex-
perimental runs discussed in Section 3. It is also crucial to
note that the training hyperparameters and network config-
uration were run with the following hardware limitations
imposed by the challenge: 16 vCPU, 64GB RAM, 16 GB
NVIDIA T4 GPU, and 100GB of disc storage space.

Table 1. Network hyperparameters. Bolded values indi-
cate the configurations that achieved the best performance.

Parameter Values
Optimizers Adam

Learning rates 0.1, 0.01, 0.001, 0.0001
Number of epochs 10, 30, 50, 100

Early stop 5, 10, 20

Loss Function Binary Cross Entropy
with Logistic Loss

Positive weight yes, no
Batch size 100, 200, 300, 400, 500
Dropouts No, 0.1, 0.2, 0.3, 0.4

3. Results

During the official phase of the challenge, we success-
fully ran multiple experiments testing N-BEATS, LSTM,
and CNN-based architectures. Best results for each net-
work are presented in Tab. 2.

Table 2. Scores on the validation set of the official phase.
Submission ID Network Score

2064 N-BEATS 0.068
2095 LSTM 0.195
2248 CNN 0.237

4. Discussion and Conclusions

Classifier performance varied depending on the network
used, with scores ranging from 0.068 to 0.237 on the hid-
den validation set. Comparing to widely used LSTM and
CNN architectures, the N-BEATS multi-branch architec-
ture maintains a simpler design due to its reliance solely
on fully connected layers. Comparing with our previous
approach using multi-branch architecture [8] where per-
formance differences also narrowed when the number of
input leads was reduced, problem complexity plays a vital
role. We expected, that in binary classification, such input
reduction is unnecessary, and N-BEATS performs com-
petitively when trained on the full input data. Although
our fine-tuned submissions failed to run successfully in the
challenge environment, we ran additional experiments lo-
cally. Local cross-validation results for multi-branch archi-
tecture is visible as first row of Table 3 and it shows, that



N-BEATS can obtain comparable results to other widely
used networks.

To assess if the multi-branch design improves N-BEATS
performance, a series of additional local studies was con-
ducted, where cross-validation scores for the multi-branch
architecture were compared to results obtained with single-
branch variants. Cross-validation scores are summarized
in Table 3. Local evaluations were obtained using the
evaluate model.py script provided as part of the Challenge
code base [14].

Table 3. Comparison between multi-branch and single-
branch architecture utilising N-BEATS network.

Branch Score AUROC Acc F2
All 0.251 0.742 0.024 0.005
α 0.040 0.636 0.023 0.004
β 0.259 0.698 0.092 0.135
γ 0.138 0.591 0.023 0.004
δ 0.061 0.505 0.023 0.004
ϵ 0.236 0.709 0.029 0.017
ζ 0.05 0.500 0.979 0.968

Based on the extended metrics collected during cross-
validation, as shown in Table 3, it is evident that the N-
BEATS multi-branch architecture yields significantly bet-
ter results than applying the same network solely to the raw
signal input, represented by branch α. Notably, when com-
pared against the performance of all individual branches,
branch β, which corresponds to the wavelet analysis co-
efficients, achieved the highest challenge score. However,
relative to the multi-branch approach, the performance of
branch β exhibited a markedly lower AUROC. Branch ζ
performed the worst when evaluated independently; nev-
ertheless, it achieved the highest accuracy and F-measure
scores. The model utilizing only branch ζ effectively
learned to predict only negative responses, which—given
the statistical distribution of the positive class—resulted in
the highest accuracy.

Further investigation into the more extensive use of
wavelet analysis outputs would be required. Moreover,
the blending fully connected layer could potentially be
replaced with a multi-head attention layer to examine
whether the network could mitigate the negative influence
of underperforming branches.
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