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Abstract

Accurate electrode placement is crucial for reliable
ECG simulation. We compare a fully automated method
and a semi-automatic approach with expert input for posi-
tioning electrodes on MRI-based 3D torso meshes. Both
approaches use the same heart model to generate syn-
thetic ECGs via monodomain simulations. While precor-
dial leads showed minor spatial differences, limb elec-
trodes presented large discrepancies, notably LL and RL.
Pearson correlation and rRMSE indicated variable wave-
form similarity across leads. Sensitivity analysis revealed
that limb electrodes influence multiple channels, whereas
chest electrodes mostly affect their own leads. Results em-
phasize the importance of anatomically accurate place-
ment in computational ECG workflows.

1. Introduction

Electrocardiography (ECG) remains a widely used diag-
nostic tool for assessing cardiac function, with its accuracy
relying heavily on proper electrode placement on the torso
surface [1]. Even small positioning errors can significantly
alter ECG waveforms, potentially impacting clinical deci-
sions.

Advances in medical imaging and segmentation have
enabled personalized cardiac models from magnetic res-
onance imaging (MRI) or computed tomography (CT).
These 3D reconstructions of the torso and heart capture in-
dividual anatomical variability that population-based mod-
els may overlook. However, mapping electrodes onto com-
plex 3D surfaces remains challenging due to torso shape
variation, conductivity differences, and user expertise [1].
To mitigate this, both automated and semi-automated elec-
trode placement methods have been developed, often inte-
grating image-based tools like 3D Slicer [2].

This study compares two such methods on patient-
specific torso meshes: a fully automated pipeline and an
expert-guided approach. Using the same heart mesh and
stimulus for both, we assess how placement affects ECG
morphology, highlighting trade-offs in speed, accuracy,
and clinical interpretability.

2. Methods

This study investigates two different approaches for
placing electrodes on 3D torso meshes, comparing
their performance through ECG simulations using the
MONOALG3D software. The meshes were generated af-
ter the segmentation of magnetic resonance images from a
patient with dilated cardiomyopathy.

Patient Report

This work used data from a 71-year-old male patient
who is being monitored at the cardiology outpatient clinic
at the University Hospital of the Federal University of Juiz
de Fora. He was diagnosed with dilated cardiomyopathy,
with a 34% ejection fraction. The patient underwent car-
diac MRI (with both cine and late-gadolinium-enhanced
sequences). Short-axis images of the heart were used for
the segmentations.

Automatic Electrode Placement

The first method consists of an automated pipeline based
on [3]. The procedure uses the same MRI dataset to au-
tomatically segment both the torso and the heart. The
pipeline starts with machine learning-based torso contour
extraction, where the scout MR images for each subject are
first segmented using a convolutional neural network (U-
Net), followed by automated post-processing and refine-
ment through a second network [4]. Extracted contours
are then used to fit a statistical shape model (SSM) of the



human body, which is iteratively adjusted to match the ex-
tracted contours and form an initial torso mesh. To capture
subject-specific anatomical variation, the mesh is further
deformed using thin plate splines, with post-processing
steps to ensure smoothness and anatomical plausibility.
The locations of the ECG electrodes are identified on the
mean SSM torso, and their positions are transformed with
the mesh such that the resulting torso had electrodes lo-
cated in equivalent locations. This fully automated work-
flow minimizes human intervention, ensuring high-speed
processing and reproducibility across datasets.

Semi-Automatic and Manual Electrode Placement

The second method integrates semi-automatic segmen-
tation with expert manual annotation. Initially, the torso
mesh was segmented from the patient’s MRI using ToO-
TALSEGMENTATOR [5], while the cardiac and internal
organ structures were extracted using MRSEGMENTA-
TOR [6]. The resulting anatomical meshes were then
loaded into a custom-developed interactive application, de-
signed to allow clinicians to manually position the elec-
trodes on the surface of the torso with reference to anatom-
ical landmarks. Figure 1 illustrates interface of this tool.

The application enables physicians to navigate the 3D
enviroment, visualize individual anatomical meshes such
as the heart, lungs, spine, and torso, and precisely place
the 10-lead electrodes by selecting predefined labels. Each
electrode can be moved in 3D space using translation ar-
rows, and its position is stored in real time. This environ-
ment facilitates accurate placement based on clinical ex-
pertise and anatomical landmarks. It is important to note
that the rib cage and sternum segmentations were not ac-
quired due to the poor contrast in the MRI scans for these
structures. Therefore, placements were instead primarily
guided by the torso shape, heart position, and the expertise
of the physician.

ECG Simulation and Analysis

For both torso and electrode placements, the heart mesh
generated by method in [7] was used to simulate action po-
tential propagation using the monodomain model through
the open-source software MONOALG3D [8]. The human-
based Ten Tusscher cellular model [9] was employed to
describe the cellular dynamics. Cardiac tissue conductiv-
ity tensor o was modeled as anisotropic, incorporating the
fiber orientation and a prescribed anisotropy ratio. Tempo-
ral discretization was set at At = 0.02 ms, while spatial
discretization was h = 500 um, with C,,, = 1 uF/cm?
and 3 = 1400 cm~!. A single electrical stimulus was ap-
plied at the apex, and ECG signals were computed at the
electrode positions using a pseudo-ECG algorithm.

Figure 1: Interface of the custom software used for manual
electrode placement.

] . A Heart
A Quto
J . 4 Manual
% e
Se -
' .
? .

Figure 2: Three-dimensional representation of the torso
and heart with manual (blue) and automatic (red) electrode
placements. Black lines connect corresponding electrode
pairs. Most discrepancies are minimal in the precordial
region; larger deviations are observed in limb leads.

3. Results

Figure 2 shows a 3D visualization of the torso mesh
along with the manually and automatically placed elec-
trodes. Each pair of corresponding electrodes is connected
by a black line to indicate spatial displacement.

To quantitatively evaluate the placement differences be-
tween methods, Table 1 presents the spatial displacements
between corresponding manual and automatic electrodes.
For each lead, we report the differences in X, Y, and Z
coordinates (AX, AY, AZ) as well as the Euclidean dis-
tance. All values are expressed in millimeters (mm).

Figure 3 shows the ECG waveforms from the 12 stan-
dard leads for both manual and automatic electrode con-



Table 1: Spatial difference between manual and automatic
electrode positions (in mm).

Lead AX AY AZ Distance
Vi 10,250  -6,830  -53,820 55,211
V2 7,740  -7,100  -46,980 48,140
V3 2,330 -6,170  -47,370 47,827
V4 1,080 -1,430 -36,970 37,013
V5 -25,240 -21,810  -41,600 53,323
V6 24,880 -44,790  -52,130 73,094
LA 33,807 -16,859 -105,777 112,321
LL 965 40,541 -324,419 326,944
RA -5,787 -14,616 -106,163 107,321
RL 22,229 57,107 -333,049 338,640

figurations. This side-by-side comparison highlights how
each lead responds to differences in electrode placement.
Blue lines correspond to ECGs generated with manually
placed electrodes, while dashed red lines represent the sig-
nals using the automatic configuration.
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Figure 3: Comparison of 12-lead ECG signals generated
from manual (blue) and automatic (dashed red) electrode
placements. Each subplot corresponds to a different ECG
lead.

Waveform discrepancies can be observed in both shape
and amplitude, especially in leads I, III, V2-V6. Some
leads show strong agreement in morphology but may differ
in amplitude scaling. This visual inspection reinforces the
importance of precise electrode positioning, especially for
precordial leads sensitive to small spatial shifts.

To quantify the similarity between ECG signals from
both placement strategies, we computed the Pearson cor-
relation coefficient (r) and relative root mean square error
(rRMSE) for each of the 12 leads. Pearson captures wave-
form shape and timing, while rRMSE reflects amplitude
mismatch. Results showed substantial variability. Among
limb and augmented leads, aVF had the highest correlation

(r = 0.98) but a high rRMSE (=137%), indicating good
shape agreement but amplitude mismatch. Leads II and III
also showed strong correlation (r > 0.96) with rRMSE
over 100%. Precordial leads showed more inconsistency.
V1 had moderate agreement (r = 0.77, IRMSE = 66.8%),
while V6 showed poor similarity (r = —0.55, rRMSE
= 124.7%), highlighting sensitivity to placement. Leads
V2-V5 had rRMSE between 89-117%, despite varying
correlations. The overall comparison (all leads concate-
nated) yielded » = 0.43 and global rRMSE ~101%, show-
ing that the placement method significantly affects ECG
morphology. While some leads retain shape similarity,
amplitude differences may remain clinically relevant, es-
pecially in regions with complex anatomy.

To investigate how sensitive the final multichannel ECG
is to variations in individual electrode placement, we con-
ducted a systematic analysis: each automatic electrode was
replaced one at a time by its corresponding manual coun-
terpart. After each substitution, a full 12-lead ECG was
computed and compared to the original fully automatic
configuration. Table 2 summarizes the results of this anal-
ysis using the relative root mean square error (rRMSE) for
each multichannel lead, expressed as a percentage. Each
row in the table corresponds to the substitution of one
of the ten electrodes (rows 1 to 10 represent electrodes
V1-V6, LA, LL, RA, and RL respectively). Each column
shows the resulting rRMSE for a specific lead in the 12-
lead ECG system: leads I, II, III, aVR, aVL, aVF, and pre-
cordial leads V1-V6.

Table 2: rRMSE (%) for each multichannel lead after re-
placing one automatic electrode with the manual one.

Etz;‘i,fie I I II aVR aVL aVF V1 V2 V3 V4 V5 Ve
V1 0 0 0 0 ©0 0 132 0 0 0 0 0
V2 0 0 0O 0O 0 0 0 148 0 0 0 0
V3 0 0 0 0 0 0 0 0 9 0 0 0
V4 0 0 0 0O 0 0 0 0 0 52 0 0
V5 0 0 0 0 0 0 0 0 0 0 172 0
V6 0 0 0 0 0 0 0 0 0 0 0 202
LA [324 0 28 25 58 14 10 8 6 4 11 23
LL 0 113 118 107 123 115 42 36 25 18 46 98
RA [318 26 0 50 29 13 10 8 6 4 11 23

This analysis serves as a localized sensitivity test, re-
vealing how the final 12-lead ECG is affected when only
a single electrode from the automatic configuration is re-
placed by its manual counterpart. The values in Table 2
represent the rRMSE introduced in each multichannel lead
due to such a substitution. As expected, precordial elec-
trodes (V1-V6) exhibit high sensitivity primarily to their
corresponding ECG leads, while the rest of the leads re-
main unaffected. On the other hand, limb electrodes (LA,
LL, RA) affect a broader set of leads. These electrodes are
involved in the derivation of limb and augmented leads (I,



IL, II1, aVR, aVL, aVF), and their replacement causes sub-
stantial changes in those signals. For instance, replacing
the LA electrode (row 7) significantly alters lead I ({RMSE
=1324%), aVL (58%), and aVR (25%), and even has mod-
erate effects on precordial leads such as V6 (23%). Inter-
estingly, V6 appeared to be the most sensitive precordial
lead to variations in limb electrode positions, particularly
those involving LA and LL. This suggests that despite be-
ing a chest lead, V6 may be more susceptible to torso-wide
field changes introduced by limb placement differences.
Among all electrodes, the LL electrode (row 8) resulted in
the highest overall sensitivity, impacting nearly all leads
with high rRMSE values—most notably II (113%), III
(118%), and aVF (115%). This is consistent with the spa-
tial discrepancy observed in Figure 2, where the LL elec-
trode showed one of the largest positional deviations be-
tween manual and automatic placement.

4. Conclusion

This study compared a fully automated pipeline and a
semi-automatic, expert-driven approach for placing elec-
trodes on MRI-derived 3D torso meshes, aiming to quan-
tify their impact on simulated 12-lead ECG signals. Spatial
analyses revealed small discrepancies for most precordial
leads (V1-V6), yet limb leads exhibited substantial posi-
tional deviations, occasionally exceeding 300 mm. These
findings underscore the inherent difficulty in automatically
mapping limb electrode positions in a clinical context.

Pearson correlation of the resulting ECG waveforms
highlighted that limb-dependent leads can show high con-
cordance (e.g., aVF with » = 0.9849) when electrode
placement happens to align well, whereas certain precor-
dial leads, such as V6, presented markedly lower correla-
tions (r = —0.5547). These differences suggest that even
small spatial errors in electrode coordinates can generate
significant waveform discrepancies, potentially impacting
clinical interpretations.

It is important to highlight that we were unable to deter-
mine which method was more accurate due to the absence
of segmentations for key anatomical landmarks, such as
the rib cage and sternum. In the future, we plan to incor-
porate CT images, which will enable a more precise eval-
uation, and expand the number of patients studied. Nev-
ertheless, our results underscore the trade-off between au-
tomation and anatomical accuracy, reinforcing the need for
more refined strategies in automatic electrode placement.
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