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Abstract

The widespread adoption of artificial intelligence in
clinical cardiology is hampered by a critical factor:
the lack of transparency in automated electrocardiogram
(ECG) interpretation systems. While deep learning mod-
els can accurately classify cardiac abnormalities, their
”black-box” nature prevents clinicians from verifying the
diagnostic reasoning, undermining clinical trust. To ad-
dress this, we developed a multimodal diagnostic frame-
work that emulates clinical reasoning by directly linking
ECG signal features to their corresponding textual de-
scriptions from clinical reports. Our system learns to
recognize abnormalities like Left Bundle Branch Block
(LBBB) not merely as a classification label, but by identify-
ing and associating it with established diagnostic criteria,
such as a ’widened QRS complex (> 120 ms)’. Trained
on a large dataset of paired ECG signals and narrative
reports, our model achieves diagnostic accuracies compa-
rable to conventional supervised models without requiring
explicit training on classification labels. By grounding its
predictions in clinically relevant subfeatures, the system
provides transparent, verifiable evidence for its conclu-
sions. This approach represents a paradigm shift toward
AI systems that augment clinical decision-making with in-
telligible, evidence-based insights, fostering greater trust
and facilitating integration into the diagnostic workflow.

1. Introduction

The 12-lead electrocardiogram (ECG) is a cornerstone
of cardiovascular medicine, offering a non-invasive, cost-
effective window into the heart’s electrical function. With
cardiovascular diseases remaining the leading cause of
global mortality [1], the immense volume of ECGs per-
formed annually strains healthcare systems and expert in-
terpreters, leading to potential delays in diagnosis and ad-
verse patient outcomes.

To meet this challenge, automated ECG analysis has
evolved significantly. Supervised learning approaches

have achieved cardiologist-level accuracy for a range of
conditions [2–6]. More recently, self-supervised learning
methods have demonstrated the ability to learn robust rep-
resentations from vast quantities of unlabeled ECG data
[7, 8].

Despite these triumphs, a significant barrier to clinical
adoption persists: the ”black-box” problem. The opaque
nature of deep learning models poses tangible risks: with-
out a clear rationale, clinicians cannot easily distinguish a
correct, nuanced diagnosis from a coincidental correlation
or an error caused by an out-of-distribution artifact. This
fundamentally limits the role of AI to that of a prelimi-
nary screening tool rather than a trusted diagnostic partner.
Standard explainability techniques, such as attention maps
or Grad-CAM [9, 10], often highlight regions of the ECG
signal but fail to provide explanations in a clinically mean-
ingful lexicon.

A promising direction to bridge this trust gap is mul-
timodal learning, integrating signals with clinical text
[11–13]. This work builds on that foundation by propos-
ing a framework that classifies ECGs in a zero-shot manner
by grounding its predictions in verifiable, text-based crite-
ria, which we term ”subfeatures.” Our central hypothesis
is that by forcing a model to learn these direct signal-to-
text correlations, it will develop a more robust and gener-
alizable understanding of cardiac electrophysiology than a
model trained on abstract labels alone.

The standard ECG signal is composed of three primary
waveforms: the P-wave (atrial depolarization), the QRS
complex (ventricular depolarization), and the T-wave (ven-
tricular repolarization). These waveforms encode critical
diagnostic features for the abnormalities studied here. For
example, 1st-degree AV block manifests as a prolonged
PR interval between the P-wave and QRS complex, while
RBBB and LBBB critically alter QRS morphology and du-
ration. Atrial fibrillation disrupts the regularity of P-waves
and the rhythm of QRS complexes, while sinus tachycardia
and bradycardia are defined by the rate of successive QRS
complexes (the RR interval). Our framework is designed
to explicitly learn these fundamental associations.



2. Methods

Our methodology correlates signal morphology with
clinical terminology by leveraging a large, multimodally
annotated dataset and a vision-language training paradigm.

2.1. Dataset

We used the CODE-15% dataset, a 15% subsample
of the CODE study [2], containing 345,779 standard 10-
second, 12-lead ECGs sampled at 400 Hz from 233,770
unique patients. We focused on six prevalent diagnoses:
1st-degree atrioventricular block (1dAVb), right bundle
branch block (RBBB), left bundle branch block (LBBB),
sinus bradycardia (SB), atrial fibrillation (AFIB), and sinus
tachycardia (ST). All data were de-identified to protect pa-
tient privacy in accordance with ethical guidelines.

The dataset’s key feature is the inclusion of detailed
medical reports generated by the validated University of
Glasgow ECG analysis program [14, 15]. An example is
shown in Table 1. We trained our primary model using
only the narrative signal descriptions, while a supervised
baseline was trained on the diagnostic labels for compari-
son.

Table 1. Example of a clinical narrative report from the
CODE-15 dataset, translated from Portuguese.

Signal Description: Rightward and superior
QRS axis deviation. P wave: normal amplitude
and duration. PR interval: normal duration. QRS:
normal axis and amplitudes. Prolonged duration
with RSR pattern in V1 and a wide S wave in lat-
eral leads. ST segment and T wave: secondary
changes due to RBBB. QTc: abnormal.
Conclusion: Sinus tachycardia; right bundle
branch block.
Labels: 1dAVb=0, RBBB=1, LBBB=0, SB=0,
AFIB=0, ST=1.

2.2. Model and Training

The architecture comprises a 1D Vision Transformer
(ViT) [16] for the ECG signal and a BioBERTpt model
[17, 18] for the clinical text. The ViT architecture was se-
lected for its proven ability to model long-range dependen-
cies, crucial for analyzing ECGs where diagnostic clues
can span significant time intervals. The raw signal is seg-
mented into non-overlapping patches, which are then lin-
early projected to form the input sequence for the Trans-
former encoder. Our training strategy, inspired by CLIP
[19], aligns the representations from these two modalities.

This training paradigm is conceptually twofold. The
first objective, a contrastive signal loss, builds a robust
ECG encoder by training the model to recognize two aug-
mented versions of the same ECG as being similar, while
pushing them apart from other ECGs in a batch. This en-
sures the learned features are invariant to minor noise. The
second, and more critical, objective is the signal-text align-
ment loss. Here, the model learns to minimize the distance
in the shared embedding space between an ECG signal’s
representation and that of its paired narrative report. This
process, performed end-to-end using the Adam optimizer,
explicitly forces the model to learn the visual manifestation
of clinical descriptions, effectively creating a cross-modal
dictionary between ECG patterns and medical language.

2.3. Evaluation Protocol

Evaluation was performed on the CODE Test subset of
827 high-quality ECGs. The zero-shot model was evalu-
ated via a clinically intuitive process: for a new ECG, its
signal embedding is compared to a library of pre-computed
text embeddings of ”subfeatures.” These subfeatures were
crafted by consulting clinical guidelines to ensure they rep-
resent canonical diagnostic criteria. A diagnosis is made
if the cosine similarity score for a subfeature surpasses a
threshold optimized on a validation set to balance sensitiv-
ity and specificity, providing a direct, textual justification
for each finding. For the supervised baseline, the same ViT
architecture was used, but its output was fed into a clas-
sification head trained with a standard cross-entropy loss
against the diagnostic labels.

3. Results

Our experiments show that the zero-shot multimodal ap-
proach achieves diagnostic performance on par with a fully
supervised model, while offering full interpretability.

3.1. Diagnostic Accuracy

As detailed in Table 2 and Table 3, our interpretable
model achieved a mean accuracy of 0.968 and a mean
AUC of 0.861. This performance is highly competitive
with the supervised model’s mean accuracy of 0.973 and
mean AUC of 0.871. One possible interpretation for the
interpretable model’s stronger performance on LBBB and
AFIB is that the narrative descriptions for these conditions
contain rich morphological descriptors (e.g., ’notched
QRS’, ’absent P-waves’) that provide a more powerful
training signal than a simple binary label.



Table 2. Accuracy comparison of the interpretable (zero-
shot) and supervised models across all six conditions.

Abnormality Interpretable Supervised
1dAVb 0.961 0.970
RBBB 0.966 0.959
LBBB 0.959 0.981
SB 0.984 0.986
AFIB 0.978 0.983
ST 0.960 0.959
Average 0.968 0.973

Table 3. AUC comparison of the interpretable (zero-shot)
and supervised models, showing competitive performance.

Abnormality Interpretable Supervised
1dAVb 0.670 0.696
RBBB 0.843 0.982
LBBB 0.987 0.992
SB 0.861 0.896
AFIB 0.862 0.708
ST 0.944 0.954
Average 0.861 0.871

3.2. Clinical Interpretability

The framework’s primary contribution is its delivery of
transparent, evidence-based diagnoses. For a diagnosis of
RBBB, the model must find high similarity with the sub-
feature: ”QRS complex duration >120 ms with character-
istic RBBB morphology.” As shown in Figure 1, the system
correctly identified an RBBB case exhibiting these pathog-
nomonic features. This granular, criteria-based explana-
tion moves beyond abstract visualizations, offering a veri-
fiable audit trail for each diagnosis. This is critical not only
for clinical trust but also for educational purposes, allow-
ing trainees to see a clear link between textbook criteria
and their real-world presentation on an ECG.

4. Conclusion

We have presented a multimodal framework for ECG
analysis that achieves high diagnostic accuracy without
sacrificing interpretability. Our primary contribution is
demonstrating that high performance can be achieved
without sacrificing transparency, a critical step toward clin-
ically integrated AI.

The clinical relevance of this approach is significant.
The workflow implication is a potential shift from simple
AI-driven alerts to interactive diagnostic sessions where a
physician can review a finding and see the specific support-
ing evidence. In resource-limited settings, it could func-
tion as a dependable screening and triaging tool. The core

Figure 1. Comparison of lead V1 tracings. Top: An
ECG with Right Bundle Branch Block (RBBB), showing
the characteristic widened QRS complex (> 120 ms) and
morphological pattern. Bottom: An ECG showing normal
sinus rhythm for comparison.

innovation is the shift from opaque predictions to a collab-
orative, evidence-based dialogue between the clinician and
the AI.

This study has several limitations. First, its foundation
on a single dataset means that generalizability must be con-
firmed on external datasets from diverse patient popula-
tions. Second, the reliance on machine-generated reports
may not capture the variability of human-authored notes.
Finally, our diagnostic scope was limited to six common
conditions.

Future directions will focus on clinical translation. Key
efforts will include expanding the diagnostic lexicon to in-
clude rarer arrhythmias; developing an interactive clinical
interface where clinicians can query the model to highlight
corresponding waveform evidence; and ultimately, con-
ducting prospective clinical trials to rigorously assess the
tool’s real-world impact on diagnostic accuracy and clin-
ician confidence. This work represents a step towards a
new generation of medical AI designed to be collaborative
partners in clinical reasoning.
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