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Abstract

Reliable electrocardiogram (ECG) signal quality es-
timation is essential for the development of intelligent
healthcare systems, particularly in wearable monitoring
applications. Ensuring signal fidelity is critical to pre-
vent diagnostic errors and reduce the risk of false alarms
or missed detections due to noise and motion artifacts,
common challenges in ambulatory ECG recordings. In
this study, we present a deep learning-based approach
for automated ECG signal quality estimation using a fine-
tuned convolutional neural network. The model is based
on the LiteVGG-11 architecture, originally designed for
atrial fibrillation detection, and adapted through transfer
learning to classify signal quality. This fine-tuning strategy
allows the model to retain relevant cardiac feature repre-
sentations while learning to discriminate between clean
and noisy ECG segments. The model was trained and
evaluated on a real-world clinical dataset collected us-
ing a wearable ECG patch device. The dataset consists of
continuous recordings from two cohorts: 56 participants
over 24 hours and 117 participants over a 7-day period.
Ground truth annotations for signal quality were provided
by clinical experts. The proposed model achieved a sensi-
tivity of 0.8964 £ 0.0356, specificity of 0.9783 + 0.0028,
Fl-score of 0.9112 + 0.0263, area under the ROC curve
(AUC) of 0.9374 £ 0.0174, and accuracy of 0.9597 +
0.0041. These results demonstrate the effectiveness of deep
learning for robust ECG signal quality estimation in wear-
able settings. This approach has the potential to enhance
the reliability of long-term cardiac monitoring and facil-
itate more accurate clinical interpretation and diagnosis.

1. Introduction

Electrocardiograms (ECG) have emerged as a widely
used tool in the diagnosis and prevention of cardiovascular

diseases [/1]], offering a straightforward and non-invasive
method. However, ECG recordings are frequently suscep-
tible to noise that can be related to electrode movement and
muscle artifacts, among other factors, presenting a chal-
lenge to accurate analysis [2}3]].

The advancements in ECG devices have facilitated the
development of prolonged ECG recording beyond tradi-
tional hospital environments. In this scenario, it is neces-
sary to ensure that collected ECG data undergoes thorough
examination to remove any low-quality instances before
being forwarded for analysis, ensuring the reliability of the
information contained in the ECG signal and preventing
misinterpretation due to noise [2]. Therefore, ECG signal
quality analysis plays an important role in the diagnosis
and monitoring of cardiovascular conditions.

The PhysioNet/Computing in Cardiology Challenge
2011 (CinC2011) dataset [4], commonly referred to as the
ECG quality dataset, has been a valuable resource for this
field of ECG signal quality, and most of the works usu-
ally use this dataset. Clifford et al. [5]] proposed feature-
based SVM and MLP models to detect poor-quality ECGs
using 12-lead ECGs or single-lead ECGs, achieving an ac-
curacy (Acc) of 0.97 for the SVM model. Athif et al. [6]]
used a decision tree algorithm on features extracted from
12-lead ECG signals, achieving an Acc of 0.91. Zhang
et al. [7] proposed an LSTM model on raw ECG signals,
achieving an Acc of 0.93. Hermawan et al. [§]] proposed
a method based on wavelet decomposition and heuristic
rules, achieving an Acc of 0.85. Liu et al. [9] proposed a
CNN based on spectrograms of the ECG signals, achiev-
ing an Acc of 0.93. Finally, Kuetch et al. [3] compared
the ability of 39 individual Signal Quality Indexes (SQIs)
to determine if a signal is good or bad, achieving AUCs >
0.90.

Classical machine learning methods typically rely on a
set of engineered features derived from well-established
SQIs that can encapsulate various aspects of the ECG
waveform [5,/10]. In contrast, convolutional neural net-



works (CNNs) have demonstrated remarkable success in
diverse applications by automatically learning hierarchical
representations from raw data. In the context of ECG sig-
nal quality, CNNs have the potential to capture intricate
patterns and dependencies within the signal without the
need for explicit feature engineering.

This paper proposes a CNN model for ECG signal qual-
ity estimation using a finetuning approach based on a
model previously developed for atrial fibrillation (AFib)
detection in single-lead ECGs [11]. We evaluate our
model on a real-world clinical dataset using a 5-fold cross-
validation strategy and compare its performance with a
dataset-specific training approach.

2. Material and Methods

2.1. Dataset

We conducted a clinical experiment to acquire continu-
ous wearable ECG signals in a real-world clinical setting.
Data were collected using a Medical Device (MD) sensor,
a certified class Ila device for ECG acquisition compliant
with the EU Medical Device Regulation 2017/745 (Certifi-
cate CR-03-1229-813-23 02 / FI-MF-000024281), config-
ured with a 128 Hz sampling rate. The sensor was placed
in a modified lead II configuration, with the reference elec-
trode on the right shoulder and the positive electrode on the
left abdomen. The experiment was divided into two inde-
pendent phases:

1. Phase 1: Data were recorded from 56 subjects over a
continuous 24-hour period [11]].

2. Phase 2: Data were recorded from 117 subjects over a
continuous 7-day period.

Following data acquisition, signals were segmented into
non-overlapping 10-second windows. A subset was ran-
domly selected for annotation consisting of 60 minutes of
data for Phase 1, and 210 minutes of data for Phase 2.

An experienced cardiologist annotated all selected win-
dows from this subset. In Phase 1, segments were clas-
sified into four categories: (i) Atrial Fibrillation, (ii) Nor-
mal, (iii) Other abnormalities, and (iv) Artifacts. In Phase
2, segments were categorized into three groups: (i) Atrial
Fibrillation, (ii) Non-Atrial Fibrillation, and (iii) Artifacts.
In total, Phase 1 resulted in 20,160 annotated 10-second
segments, including 2,391 artifacts, while Phase 2 pro-
duced 145,008 annotated segments, including 37,271 ar-
tifacts. Table[I] summarizes these details.

2.2.  Preprocessing

We applied the same preprocessing steps as in [|11}/12].
To mitigate baseline drift and low-frequency noise, we
used a second-order Butterworth high-pass filter with a 1
Hz cutoff frequency. This was followed by a second-order

Butterworth low-pass filter with a 40 Hz cutoff to focus
on the diagnostically relevant ECG frequency range. Each
signal was then normalized to have zero mean and unit
variance.

2.3. Deep Learning Model

We propose a finetuning approach to predict ECG sig-
nal quality. The overall framework is illustrated in Figure
E} For this, we used LiteVGG-11, a CNN originally de-
signed to classify AFib from dII-lead ECG signals [[11},12].
LiteVGG-11 is a lightweight variant of VGGNet [|13], opti-
mized for efficient resource usage while maintaining clas-
sification performance. The original model was trained on
the PhysioNet/CinC Challenge 2021 dataset (CinC2021),
which contains 88,252 annotated 12-lead ECG recordings
[14]. However, training was conducted using only the dII
lead instead of all 12 leads.

For our finetuning approach, all layers were unfrozen,
and the model was trained using the Adam optimizer with
a learning rate of 5e~°. Training was performed for up to
200 epochs with early stopping (patience = 50), using bi-
nary cross-entropy loss. To address class imbalance, we
applied a weighted loss strategy based on inverse class
frequencies. The model was trained with a batch size
of 128 and a validation split of 20%. Additionally, the
learning rate was reduced by a factor of 0.2 if the vali-
dation loss plateaued for 30 epochs. All experiments were
implemented in Python (version 3.11.9) using the Keras
API (version 2.15.0) with a TensorFlow backend (version
2.15.0).

2.4. Evaluation

We compared three scenarios to evaluate our models:
1. (I) training only with Phase 1 data and testing with
Phase 2 data;
2. (II) the opposite, training only with Phase 2 data and
testing with Phase 1 data;
3. (IIT) a 5-fold cross-validation approach, training with
all data from both phases, ensuring that data from the same
subject didn’t appear in both the train and the test set to
avoid data leakage.

In terms of performance metrics, we considered accu-
racy (Acc), sensitivity (Se), specificity (Spe), Fl-score
(F1), and AUC-ROC (Auc) to evaluate our model.

3. Results

The performance metrics of our model across the three
evaluation scenarios are summarized in Table 2l

Our model demonstrated good performance in all eval-
uation settings, particularly in the 5-fold cross-validation
scenario. In Scenario I (training on Phase 1, testing on



Table 1. Statistical Overview of our Clinical Experiment.

# Subjects Age # Non-Artifacts # Artifacts # Total
Phase 1 56 (39 male) 46.8 + 14.8 17,769 2,391 20,160
Phase 2 117 (52 male) 50.7 +12.6 107,737 37,271 145,008
Total 125,506 39,662 165,168
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Figure 1. Overview of the proposed method for ECG signal quality estimation.
Table 2. Summary of Model’s Performance for ECG quality signal Prediction.
Scenario Sensibility Specificity F1-score AUC Accuracy
@ 0.8719 0.9671 0.8865 0.9195 0.9426
an 0.7696 0.9765 0.7916 0.8730 0.9519
(I1I) 0.8964 £ 0.0356 0.9783 4+ 0.0028 0.9112 + 0.0263 0.9374 £ 0.0174 0.9597 + 0.0041

Phase 2), the model achieved 0.8719 sensitivity and 0.9671
specificity, with an overall accuracy of 0.9726. In Sce-
nario II (training on Phase 2, testing on Phase 1), sensi-
tivity dropped to 0.7696, while specificity remained high
at 0.9765, resulting in an accuracy of 0.9519. When
trained and evaluated on the combined dataset (Scenario
III), the model achieved the best balance between sensitiv-
ity (0.8964 + 0.0356) and specificity (0.9783 £ 0.0028),
yielding an AUC of 0.9374 + 0.0174 and an accuracy of
0.9597 £ 0.0041. These results demonstrate the effective-
ness of our approach in developing a reliable model for
continuous ECG signal quality monitoring in wearable de-
vices.

Discussion

In this work, we developed a model for ECG signal
quality estimation. Our model achieved good performance
across all evaluation scenarios, with high sensitivity, speci-
ficity, and overall accuracy. The best performance was
observed in the 5-fold cross-validation scenario (Scenario
IIT), where the model leveraged the full dataset.

Our model was trained and evaluated on a dataset col-
lected from a real-world clinical environment using wear-
able ECG sensors. This setting ensures that the model is
well-suited for deployment in practical scenarios, particu-
larly for continuous, long-term monitoring.

Most existing studies on ECG signal quality assessment
rely on the CinC2011 dataset, which consists of 12-lead
ECG recordings with global quality labels. However, our



dataset was collected in a real-world wearable ECG set-
ting, with annotations at the single-lead level. This funda-
mental difference prevents direct comparisons with prior
state-of-the-art methods trained on CinC2011. Neverthe-
less, deep learning models such as LSTM [7]] and CNN-
based spectrogram analysis [[9] reported accuracies of 0.93,
while SQI-based methods achieved AUCs above 0.90 [3].
Our model, despite being trained on a different dataset,
achieved similar or superior performance, with an AUC
of 0.94 and accuracy up to 0.96 in cross-validation. These
results indicate that our approach is competitive with exist-
ing state-of-the-art models, even though it was trained on a
dataset specifically collected from wearable ECG devices.

Despite its promising results, some limitations must be
acknowledged. Our model was trained exclusively on dII
lead signals, which may limit its generalizability to other
ECG lead configurations. Future work should explore its
applicability to multi-lead ECG systems. Moreover, while
our dataset is clinically relevant, expanding it to larger and
more diverse populations could further improve generaliz-
ability. Additionally, while our model performs well, in-
corporating hybrid approaches that combine deep learning
with established SQI features could enhance interpretabil-
ity and robustness.

5. Conclusion

This study demonstrates that a finetuned LiteVGG-11
model can effectively estimate ECG signal quality in a
real-world clinical setting. Future work should focus on
enhancing generalizability through dataset expansion and
benchmarking against existing signal quality assessment
frameworks.
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