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Abstract 

Exploring the association between the 

electrocardiogram (ECG) and cardiac magnetic 

resonance (CMR)-derived features may enhance our 

understanding of cardiovascular physiology. We aimed to 

identify clusters of individuals without diagnosed 

cardiovascular disease (CVD) based on their ECG 

phenotypes in an unsupervised manner and evaluate their 

cardiac anatomical differences through CMR. 

Spatial and single-lead ECG markers were calculated 

from 10-second 12-lead ECGs from 51,974 UK Biobank 

individuals without diagnosed CVD. A k-means clustering 

model grouped individual ECG phenotypes into k clusters. 

Statistical analyses were conducted to assess ECG, 

demographic and CMR differences across clusters. 

Three distinct ECG-based clusters were identified 

(N1=19,470, N2=22,256, N3=8,997), with significant 

differences in ECG morphology and CMR-derived 

anatomical features. The most discriminative ECG 

features involved ventricular repolarization in precordial 

leads (i.e., T- and ST-segment amplitude). Cluster-specific 

electro-anatomical alignment was stronger in Cluster 3. 

Our findings show that ECG phenotyping through 

unsupervised clustering can reveal anatomical cardiac 

differences. Future work will evaluate the association with 

incident risk of each of these clusters. 

 

1. Introduction 

Cardiac magnetic resonance (CMR) is considered the 

gold standard for evaluating cardiac morphology and 

function[1], providing detailed insights into ventricular 

volumes, myocardial mass, and atrial remodeling. 

However, it’s complexity and cost limit its use for large-

scale screening. In contrast, the electrocardiogram (ECG) 

is inexpensive, widely available and can reflect structural 

and functional abnormalities[2].  

Previous studies have explored associations between 

individual ECG features and structural measurements 

derived from CMR, such as QRS duration prolongation 

[3], Sokolow-Lyon voltage criterion[3] and QRS complex 

fragmentation[4]. For instance, Q waves have been linked 

to infarct size and location, while ST-segment elevation 

correlates with transmural ischemia and myocardial area at 

risk [5,6]. These findings suggest that ECG patterns 

provide insight into regional myocardial remodeling and 

disease. 

ECG-based unsupervised clustering has mainly been 

used to reveal novel phenotypic subgroups in specific 

disease populations [7], including patients with coronary 

artery disease [8,9] and hypertrophic cardiomyopathy [10], 

some of which show distinct CMR profiles and increased 

cardiovascular risk [7–11]. However, such approaches 

have not yet been explored in the general population. This 

could aid in detecting subclinical cardiac variation and 

support early, low-cost screening of asymptomatic 

individuals. 

We hypothesized that there are subgroups of individuals 

without diagnosed cardiovascular diseases (CVD) who 

have distinct ECG-based phenotypes, and each are 

exhibiting significant differences in cardiac anatomy. In 

this study, we applied unsupervised clustering to identify 

ECG-based phenotypic clusters and evaluate their 

anatomical characteristics through CMR features. 

 

2. Methods 

2.1. UK Biobank Cohort  

The UK Biobank (UKB) is a large-scale cohort of 

individuals from the United Kingdom [11]. Our study 

population included 51,974 individuals without diagnosed 

CVD, who participated in the UKB CMR Imaging study 

and had a 10-second 12-lead ECG recorded at rest. This 

work was conducted under application number 2964.  

 

2.2. ECG biomarkers 



ECG signal pre-processing and the computation of 

median heartbeats per lead were performed following the 

methodology described in [9]. A set of biomarkers was 

extracted from each median heartbeat in the eight 

independent leads (I, II, V1–V6), including both standard 

and advanced ECG features [9]. In addition, P-wave 

morphology was characterized using Hermite functions[9], 

applying two different basis functions for P- and T-wave 

reconstruction and four for the QRS complex. Features 

such as reconstruction error and waveform width were 

additionally included as markers. A total of 29 ECG-

related markers were obtained from each median heartbeat 

per lead. Beyond single-lead features, we derived 8 spatial 

features, including QT dispersion, QRS-T angle [12] and 

P-wave loop characteristics [13]. Additionally, the RR-

interval was included, making a total of 241 biomarkers. 

Signal processing analyses were performed using 

MATLAB (version R2022b). 

 

2.3. Identification of Clusters 

After removing ECG features that had a strong 

Spearman correlation (r>0.8) with multiple other features 

and those with missing data (>10%). Then, missing values 

were imputed using k-nearest neighbors’[14], and to 

account for potential confounding, the remaining ECG 

features were adjusted for age, sex, and body mass index 

(BMI) using multivariable linear regression models. The 

resulting residuals were standardized and used in the 

subsequent analyses.  

The optimal number of clusters was determined using a 

grid search approach, evaluating the elbow method for k-

means clustering algorithm across 2 to 10 clusters. The 

optimal number of clusters ‘k’ was determined by selecting 

the value that minimized the sum of squared errors 

distances. Finally, a k-means clustering algorithm was 

employed to categorize individuals into k clusters based on 

their ECG features. Clustering analysis were performed 

using MATLAB (version R2022b). 

 

2.4. Statistical Analyses 

We compared ECG, cardiovascular risk factors (age, 

sex, smoking status, alcohol consumption, BMI, systolic 

and diastolic blood pressure [SBP, DBP]) and ventricular 

CMR[1] features across each cluster.  To compare 

continuous variables, we applied the Kruskal Wallis test, 

reported as median [interquartile range (IQR)]. Categorical 

features were analyzed using the Chi-square test, described 

as numbers [percentages].  

The contribution of ECG features to the clustering 

process was assessed using a random forest model with 

500 trees. The most representative ECG features identified 

by the random forest model were further investigated to 

assess their relationship with cardiac anatomical 

parameters derived from CMR within each cluster. To do 

so, multivariable linear regression models were fitted 

separately for each cluster, allowing exploration of 

subgroup-specific associations. For each model, we report 

coefficient of determination (R²), Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE). The Chow 

test was used to determine whether the relationships 

between ECG and CMR features differed significantly 

across clusters by testing for structural breaks in the 

regression models. Specifically, we assessed whether the 

regression coefficients for each cluster were statistically 

different, using the first cluster as reference. P-values were 

adjusted using Bonferroni correction. 

Table 1. Cardiovascular risk factors and CMR characteristics in the study population and in each cluster. 

Characteristic All (N=51,974) 
Cluster 1 

(N=19,470) 

Cluster 2 

(N=22,256) 

Cluster 3 

(N=8,997) 

Bonferroni corrected 

P Value 

Cardiovascular risk factor                   

Male sex, no. [%] 23021 45.4% 8675 44.6% 10192 45.8% 4154 46.2% 0.01 

Age, yr 65 11.0 64 12.0 65 11.0 65 12.0 < 0.001 

BMI, kg/m2 25.8 5.4 25.56 5.4 25.8 5.3 26.2 5.6 < 0.001 

SBP, mmHg 139 25.5 137 25.0 139 25.5 142 26.0 < 0.001 

DBP, mmHg 78.5 13.5 78.5 14.0 78.5 13.5 80.5 14.0 < 0.001 

Diabetes, no. [%] 2284 4.5% 788 4.1% 943 4.2% 553 6.2% < 0.001 

Smoker, no. [%] 1755 3.5% 692 3.6% 770 3.5% 293 3.3% 0.45 

Alcohol, no. [%] 8468 16.7% 3400 17.5% 3534 15.9% 1534 17.1% < 0.001 

CMR                    

LVEDV, ml 141.2 44.6 140.8 43.6 140.9 44.8 142.9 46.0 < 0.001 

LVESV, ml 56.2 23.5 56.0 23.0 56.3 23.5 56.5 24.6 0.20 

LVM, g 81.0 31.3 79.8 30.4 80.9 31.1 83.6 33.9 < 0.001 

LVMVR, g/ml 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 < 0.001 

RVEDV, ml 149.7 51.0 151.2 50.8 149.1 51.8 148.3 50.2 < 0.001 

RVESV, ml 63.3 28.2 64.5 28.6 62.6 28.4 62.2 27.5 < 0.001 

WT, mm 9.2 2.1 9.1 2.1 9.1 2.0 9.4 2.2 < 0.001 

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, CMR: cardiac magnetic resonance, LVM: left ventricular mass, LVMVR: left ventricular 

mass to volume ratio, LV: left ventricular, RV: right ventricular, EDV: end-diastolic volume, ESV: end-systolic volume, WT: wall thickness.  



3. Results 
The study population exhibited a median age of 65 [12] 

years and a balanced gender distribution (45.39% males, 

Table 1). For each individual, a total of 241 standard and 

advanced ECG features were calculated. After applying 

feature selection, 187 adjusted ECG features were input in 

a k-means clustering algorithm (k=4), resulting in 4 

clusters with distinct ECG phenotypes. Cluster 1 included 

19,470 individuals; cluster 2: 22,256; cluster 3: 8,997 and 

cluster 4: 1,253.  

Clusters 1-3 had a balanced gender distribution (∼45% 

males), whereas cluster 4 had a higher proportion of males 

(70.5%). Moreover, individuals in cluster 4 were, on 

average, five years older compared to clusters 1-3. Clusters 

3 and 4 exhibited higher BMI (∼26.3 [5.5] kg/m2), higher 

prevalence of diabetes (6.2% and 9.0%, respectively) and 

higher SBP and DBP (∼143 [25] mmHg and 80 [14] 

mmHg), compared to clusters 1 and 2.  

Figure 1 displays the median heartbeat of each 

independent lead across the identified clusters. Cluster 4 

demonstrated clear morphological abnormalities, 

potentially representing underdiagnosed CVD, and was 

therefore excluded from further analyses. Cluster 3 had the 

shortest RR interval 1006 [226] ms, the highest QT 

dispersion (68 [68] ms), and the widest QRS-T angle 

(41.39 [59.34] o).  

Random forest analyses highlighted several ECG 

features as the most important in determining cluster 

membership, including T-wave amplitude (lead V2), T-

wave Hermite basis function 1 (lead V1), ST-segment 

amplitude (lead V1), TMV index (lead V6), and QRS 

amplitude (lead V1). These ECG features, adjusted for age, 

sex and BMI and represented as residuals, were 

subsequently taken forward into multivariable regression 

analyses to assess their association with CMR-derived 

anatomical parameters. 

Analysis of CMR features showed that Cluster 3 had the 

highest left ventricular end-diastolic volume (LVEDV, 

142.9 [46.0] ml), left ventricular end-systolic volume 

(LVESV, 56.5 [24.6] ml), left ventricular mass (LVM, 

83.6 [33.9] g/m2) and wall thickness (WT, 9.4 [2.2]mm, 

Table 1).  Cluster 1 exhibited the highest right ventricular 

end-diastolic volume (RVEDV, 151.2 [50.8] ml), and right 

ventricular end-systolic volume (RVESV, 64.5 [28.6] ml). 

Multivariable linear regression analyses regarding the 

contribution of CMR features in determining the ECG 

features revealed that few CMR features were significantly 

associated with specific ECG features, and these 

associations were cluster-dependent (Table 2).  However, 

the models had limited explanatory power, having a higher 

R² in cluster 3. No association was found with LVEDV and 

left ventricular mass to volume ratio LVMVR. 

 

4. Discussion and Conclusions  

The main finding of this study is the identification of 

three distinct ECG-based clusters among a population of 

over 51,000 individuals without diagnosed CVD in the 

UKB Imaging study, using unsupervised clustering and 

evaluating the degree of electro-anatomical alignment 

within each cluster.  These clusters showed significant 

differences in ECG morphology and CMR derived 

anatomical features. 

Figure 1. Median ECG representing each cluster for each independent lead. 

 



Individuals in cluster 3 showed greater dispersion of 

ventricular repolarization and associated with higher left 

ventricular volumes, ejection fractions, myocardial mass, 

and increased wall thickness. Cluster 1, in contrast, was 

characterized by lower QRS and T-wave amplitudes and 

higher right ventricular volumes, while cluster 2 had higher 

ST-segment deviation but intermediate CMR features. 

The ECG features that most strongly distinguished the 

clusters were primarily related to ventricular repolarization 

(T-wave amplitude, ST-segment, TMV index) particularly 

in the precordial leads. This highlights the importance of 

incorporating full 12-lead ECG data when exploring 

cardiac phenotypes. Furthermore, abnormalities in 

ventricular repolarization have been previously associated 

with an increased arrhythmic risk[9,16]. Therefore, the 

presence of distinct repolarization patterns across clusters 

may not only reflect underlying structural variation but 

also carry potential prognostic implications. 

 The degree to which these ECG features could be 

explained by structural CMR markers varied across 

clusters, with Cluster 3 demonstrating the strongest 

electro-anatomical alignment. This may suggest that 

individuals in Cluster 3 exhibit patterns of 

electromechanical remodeling, possibly reflecting early or 

subclinical stages of cardiovascular adaptation or, 

alternatively, a more efficient and physiologically 

integrated cardiac phenotype. Considering this, further 

studies should determine whether such alignment reflects 

beneficial adaptation or emerging risk.  

Among the limitations, the identified clusters represent 

descriptive, hypothesis-generating phenotypes, and the 

predominance of White-European ancestry in the UKB 

cohort limits the generalizability of the findings. 

Future work should explore the longitudinal 

implications of these clusters, assess their prognostic 

value, and investigate the integration of ECG phenotypes 

with other clinical and imaging data to enhance 

cardiovascular risk prediction. Furthermore, validation in 

external cohorts should be performed.  
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Table 2. Contribution of anatomical CMR features within 

each cluster to determine the five most important adjusted-

ECG features. 

ECG feature Cluster R2 MAE RMSE P Value 

T wave 

amplitude  

Lead V2 

Cluster 1 0.01 0.47 0.63   

Cluster 2 0.03 0.74 0.95 <0.001 

Cluster 3 0.08 0.70 0.95 <0.001 

ST amplitude  

Lead V1 

Cluster 1 0.01 0.51 0.67   

Cluster 2 0.02 0.61 0.83 <0.001 

Cluster 3 0.10 0.80 1.15 <0.001 

TMV  

Lead V6 

Cluster 1 0.01 0.34 0.49   

Cluster 2 0.01 0.34 0.46 0.01 

Cluster 3 0.03 1.11 1.67 <0.001 

QRS 

Amplitude  

Lead V1 

Cluster 1 0.02 0.54 0.70   

Cluster 2 0.03 0.75 0.98 <0.001 

Cluster 3 0.09 0.87 1.14 <0.001 

T-wave's  

Hermite Base 1  

Lead V1 

Cluster 1 0.01 0.51 0.71   

Cluster 2 0.01 0.81 0.91 <0.001 

Cluster 3 0.02 0.90 1.00 <0.001 

R2: coefficient of determination, MAE: mean absolute error, RMSE: root mean 
squared error. 
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