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Abstract

Ventricular fibrillation (VF) is a life-threatening ar-
rhythmia whose electrophysiological characteristics vary
under different pharmacological interventions. We pro-
pose a deep learning framework combining wavelet-based
representations with time-aware modeling to classify VF
episodes induced by amiodarone, diltiazem, flecainide, or
no drug. Using electrocardiogram recordings from anes-
thetized dogs, we extract features via Continuous (CWT)
and Scattering (SWT) wavelet transforms, and train Long
Short-Term Memory networks to capture temporal dynam-
ics. Classification performance is evaluated across VF
segments, and latent representations are visualized. Re-
sults show improved separability over time, with SWT
models outperforming CWT and achieving up to 68%
macro F1-score on an independent test set. This score re-
flects physiological similarities between drug effects, par-
ticularly the consistent overlap between amiodarone and
flecainide in classification and latent space. These findings
highlight the value of interpretable, time-aware models for
VF characterization analysis.

1. Introduction

Ventricular fibrillation (VF) is a life-threatening arrhyth-
mia characterized by chaotic electrical activity and rapid,
irregular contractions of the ventricles [1]. Its timely de-
tection and classification are critical for clinical decision-
making [2]. Antiarrhythmic drugs such as amiodarone,
diltiazem, and flecainide exert different electrophysiolog-
ical effects during VF, which can influence both the mor-
phology and dominant frequency of the electrocardiogram
(ECG) signal [3].

Previous studies have analyzed the frequency evolu-
tion of VF under drug intervention, highlighting time-
dependent changes in dominant frequency [3]. While re-
cent approaches have used more advanced signal analysis

[4], many still rely on manually extracted features and lack
temporal modeling. Wavelet transforms offer a flexible
way to capture non-stationary dynamics [5], and improve
over fixed-window spectral methods. However, these rep-
resentations are typically used within conventional pro-
cessing frameworks that lack end-to-end temporal model-
ing.

In this work, we propose a deep learning-based frame-
work for characterizing VF episodes induced by differ-
ent pharmacological agents in a controlled experimen-
tal setting. We scrutinize both continuous and scatter-
ing wavelet transforms to extract time-frequency features,
and train Long Short-Term Memory (LSTM) networks to
learn temporal patterns directly from raw signals. By an-
alyzing both classification performance and the structure
of the learned latent space, we show that our model cap-
tures drug-specific characteristics that evolve throughout
the VF episode, contributing to a better understanding of
VF mechanisms.

2. Materials and Methods

2.1. Continuous Wavelet Transform

To extract time-frequency features, we applied the con-
tinuous wavelet transform (CWT) to each ECG signal xi,
using a filter bank with frequency limits between 1 and 20
Hz. The CWT of a signal xi(t) is defined as:
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)
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where ψ(t) is the Morlet wavelet, a the scale, and b the
time shift.

The resulting CWT coefficients Wx(a, b) ∈ C form a
complex-valued matrix Ci ∈ CF×T, where F is the num-
ber of frequency channels and T is the number of time
steps. The magnitude |Ci| ∈ RF×T was used as the input
feature map for the deep learning models.
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Figure 1. Top: 6-second ECG segments. Middle: CWT scalograms. Bottom: SWT coefficient surfaces. (a) Amiodarone,
(b) Flecainide, (c) Diltiazem, (d) Control.

2.2. Scattering Wavelet Transform

The scattering transform produces stable, hierarchical
features through cascaded wavelet modulus and low-pass
filtering. For a signal xi(t), the first and second-order co-
efficients are:

S1xi(t) = |xi(t) ∗ ψλ1
| ∗ ϕ(t), (2)

S2xi(t) = ||xi(t) ∗ ψλ1
| ∗ ψλ2

| ∗ ϕ(t), (3)

where ψλ are wavelets at scale λ, ϕ(t) is a low-pass filter,
and ∗ denotes convolution.

The resulting scattering coefficients were averaged and
stacked into a feature vector si ∈ RD, where D is the di-
mensionality of the scattering representation. These vec-
tors were stacked into a matrix S ∈ RN×D, which served
as input for the deep learning models.

2.3. LSTM-Based Classification

We trained LSTM neural networks to classify VF
episodes based on wavelet-derived features. Two parallel
models were implemented: CWT-LSTM and SWT-LSTM.

In the CWT-LSTM setup, each input Ci ∈ RF×T, ob-
tained from the continuous wavelet transform, was treated
as a multivariate time sequence with F frequency bands
and T time steps. In the SWT-LSTM configuration, fixed-
length scattering vectors si ∈ RD were first processed by

a fully connected layer and then passed through a shallow
LSTM to capture internal structure among scattering paths.

Both models consisted of two or three stacked LSTM
layers with a hidden state size h, followed by a dense
ReLU layer and a softmax output layer. Training used the
Adam optimizer with categorical cross-entropy loss. Clas-
sification performance was evaluated using accuracy, pre-
cision, recall, and F1-score across all classes.

2.4. Manifold Learning and Visualization

To visualize the internal representations learned by the
LSTM models, we applied Uniform Manifold Approxima-
tion and Projection (UMAP) to the final hidden states. This
nonlinear embedding method enabled qualitative assess-
ment of class separability in the learned feature space.

2.5. Dataset

The dataset consists of N = 23 single-lead ECG record-
ings from anesthetized mongrel dogs with pharmacolog-
ically induced VF (amiodarone, diltiazem, flecainide, or
control). VF was induced by right-ventricular catheter
pacing with 2-s trains of 2-ms pulses (20–50 Hz) at five
times the diastolic threshold [3]. Each recording lasts six
minutes, sampled at fs = 1000 Hz. Each signal was di-
vided into three 2-minute segments: beginning, middle,
and end. We denote the dataset as X ∈ RN×T, where each
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Figure 2. Class confidence trajectories across time with LSTM for each drug condition using CWT as input features.
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Figure 3. 3D UMAP projections of LSTM activations from CWT (top) and SWT (bottom). Columns: (a) Beginning, (b)
Middle, (c) Ending. Colors indicate drug intervention class.

row xi = xi(t) is one individual ECG recording. No ad-
ditional preprocessing was applied before wavelet-based
feature extraction.

3. Experiments and Results

Figure 1 shows representative 6-second ECG segments
from each drug condition, which serve as input to the
wavelet-based feature extraction pipelines. CWT scalo-
grams reveal evolving time-frequency patterns, while
SWT surfaces capture hierarchical structures that reflect
local and scale-dependent signal structures.

To assess temporal evolution, we tracked class proba-
bilities over the 6-minute recordings as shown in Figure
2, in which the trained LSTM with CWT becomes more
discriminative after the midpoint of the signal. To further
explore this time-dependent behavior, we further divided
each signal into three 2-minute segments and projected
the LSTM activations using UMAP (Figure 3). Early seg-

ments showed high class overlap, whereas separation im-
proved in later segments; amiodarone and flecainide con-
sistently overlapped. Classification performance was eval-
uated on the coefficients of a test set from an 80/20 split of
the 23 cases, which was not used for training or tuning. Ta-
ble 1 summarizes the classification results across all three
segments using CWT and SWT features. Accuracy and
F1-score improve from early to late segments, with SWT
models outperforming CWT, reaching a macro F1-score
of 0.68. Finally, confusion matrices (Figure 4) summarize
case-level predictions via majority vote across segments.
Class overlap is most pronounced at the beginning of VF
and between amiodarone (class 2) and flecainide (class 3),
consistent with the latent space embeddings.

4. Discussion

Our findings align with previous studies showing time-
evolving frequency dynamics in VF under different phar-



Table 1. Comparison of SWT and CWT Classification Metrics Across Signal Segments
Type Metric/Class S1 (SWT) S1 (CWT) S2 (SWT) S2 (CWT) S3 (SWT) S3 (CWT)

Macro

Precision 0.395 0.370 0.456 0.640 0.692 0.660
Recall 0.393 0.370 0.453 0.620 0.684 0.650
F1-score 0.369 0.360 0.449 0.600 0.680 0.620
Accuracy 0.403 0.390 0.451 0.610 0.683 0.630

Per-Class F1

Class 2 0.467 0.50 0.361 0.56 0.582 0.62
Class 3 0.158 0.47 0.324 0.48 0.549 0.37
Class 4 0.511 0.32 0.658 0.79 0.881 0.81
Class 5 0.341 0.16 0.452 0.58 0.708 0.68

(a) (b) (c)

Figure 4. Confusion matrices by segment: (a) Beginning, (b) Middle, (c) End. Columns alternate CWT (left) and SWT
(right). Class 2: Amiodarone, 3: Flecainide, 4: Diltiazem, 5: Control.

macological interventions. Diltiazem has been associ-
ated with increased dominant frequencies, while amio-
darone and flecainide tend to slow arrhythmic activity
[3]. These effects are reflected in our UMAP projections,
where amiodarone and flecainide consistently overlap.

Unlike prior approaches based on predefined frequency
markers, our method combines wavelet-based representa-
tions with LSTM networks to extract temporal and spec-
tral features without manual segmentation or feature engi-
neering. The improved classification performance in later
VF segments suggests that drug-specific electrophysiolog-
ical patterns become more distinct over time. By inte-
grating deep learning with interpretable signal transforma-
tions, our study offers new insights into the evolving ef-
fects of antiarrhythmic drugs on VF morphology.

5. Conclusions

This study shows that time-aware deep learning models
with wavelet-based features can effectively capture drug-
specific patterns in VF. Temporal analysis improves classi-
fication, and latent space structure reveals different groups
aligned with known electrophysiological effects. These
findings support the use of interpretable, temporally struc-
tured models for VF characterization and drug response
assessment.
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