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Abstract 

    Determining the deposition pre-stretch of elastin is a 

critical challenge for initializing growth and remodeling 

(G&R) simulations in soft tissues, as it is essential for 

defining mechanical homeostasis. We developed a two-

stage implementation to numerically determine the stress-

free configuration of elastin in cardiac tissue. Firstly, 

assuming a balance between body forces from tissue 

constituents and traction forces in equilibrium, the forces 

experienced by the elastin are obtained. Secondly, a 

forward iterative algorithm was implemented to 

determine the stress-free state of elastin. The method was 

validated with a cylindrical geometry against an 

analytical solution. Lastly, the stress-free state of elastin 

was obtained for an idealized left ventricle model, which 

shows the applicability of this framework to enable future 

mechanistic G&R studies on cardiac tissue. 

 

 

1. Introduction 

Growth and remodeling (G&R) in soft tissue can be 

triggered by a loading or structural perturbation of its 

homeostatic state [1]. Constrained mixture models 

(CMMs) are a mathematical framework in which the 

G&R of soft tissues is modelled as the evolution of a 

composite material where structurally significant 

constituents, each with their own stress-free state and 

turnover rate, are constrained to a common loaded 

configuration, while mechanical equilibrium is 

maintained at tissue-level. CMMs use the loaded in vivo 

state as the reference configuration, which requires 

defining a deposition stretch for each constituent. This 

parameter quantifies the stretch from a constituent's 

natural, stress-free state to its incorporated state in the 

loaded tissue. In mechanical equilibrium, load-bearing 

constituents also satisfy mechanical homeostasis which is 

defined by the constituents found at a preferred 

deposition stretch. However, this requirement is 

particularly critical for constituents with extremely low 

turnover, such as elastin. Deposited during development 

with a half-life of decades, the elastin network maintains 

its original deposition stretch [1]. This pre-stretch 

contributes as a pre-stress to the tissue that other 

constituents must balance as they are turnover. For 

collagen and muscle cells, some values of pre-stretch 

have been inferred computationally from ex-vivo 

experimental data of vascular [2] and myocardial tissue 

[3]. However, quantifying elastin's pre-stretch remains a 

challenging inverse problem. Computational inverse 

methods have been previously applied to estimate the 

stress-free reference configuration at tissue-level [4,5] as 

well as specifically for elastin [6]. These methods can be 

broadly categorized by their fundamental approach. For 

instance, the Backward Incremental Method [5] aims to 

find the reverse deformation path from the in vivo 

configuration by incrementally applying forward 

deformations to reconstruct the stress-free configuration. 

In contrast, forward methods like the Augmented Iterative 

Method [4] are optimization-based, as they iteratively run 

standard forward simulations, progressively updating the 

guess of a stress-free configuration until the resulting 

deformed state matches the known loaded configuration 

within a specified tolerance. The former approach 

involves more complex implementation, as it often 

demands substantial modifications to the numerical solver 

to formulate the inverse problem. In contrast, forward 

methods can leverage standard finite element solvers in a 

straightforward manner, without fundamental alterations 

to their core code. 

Our goal is to develop a forward method to determine 

the stress-free configuration of elastin that will allow 

initialization of CMMs G&R simulations ensuring 

mechanical homeostasis.  

 

2. Methods 

We introduce a two-stage computational framework to 

numerically estimate the stress-free configuration of 

elastin. This computational pipeline was implemented 

using GIBBON MATLAB library [7] and the finite 

element (FE) solver FEBio [8]. 

 

 

 



2.1. Stage 1: Force balance in equilibrium 

We assume that the current deformed configuration of 

a biological organ (Ω) is subjected to traction (t) on 

boundary 𝜕Ω𝑡 . The balance of linear momentum yields 

that in all positions of this configuration the condition   

𝛻 ∙ (𝛔𝑒(𝑮𝑒) + 𝛔𝑐(𝑮𝑐) + 𝛔𝑚(𝑮𝑚)) = 𝟎 is satisfied, 

where 𝝈 are the Cauchy stresses of the load-bearing 

constituents elastin (e), collagen (c) and muscle cells (m) 

that arise from the deposition stretch tensor 𝑮𝑖 =  𝜕𝒙/
𝜕𝑿𝑖 , which represents the deformation of each constituent 

from its natural configuration (𝑿𝛼 ∈  Ω0,𝛼) to the current 

homeostatic state (𝒙 ∈  Ω). For fibrous constituents such 

as collagen and muscle cells, we prescribe homeostatic 

stretches 𝜆ℎ
𝑖  and fiber directions 𝒂0

𝑖  (i = collagen, muscle 

cells) and the deposition stretch tensor as in Equation 1. 

𝑮𝑖 = 𝜆ℎ
𝑖 𝒂0

𝑖 ⊗ 𝒂0
𝑖 +

1

√𝜆ℎ
𝑖

(𝑰 − 𝒂0
𝑖 ⊗ 𝒂0

𝑖 ) (1)
 

Cauchy stresses 𝝈𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛   and 𝝈𝑚𝑢𝑠𝑐𝑙𝑒 can thus be 

calculated and translated to forces as ∇ ∙ 𝝈𝑖 =  𝒇𝑖. The 

internal stresses of elastin remain unknown, but the linear 

momentum equation simplifies 𝛻 ∙ (𝛔𝑒) = −(𝒇𝑐 + 𝒇𝑚). 
In mechanical equilibrium, the internal forces must 

balance the traction forces on the boundary σ · 𝒏 = 𝒕 

which yields Equation 2. 

 

∇ · (𝝈𝑒) = 𝒕 − (𝒇𝑐 + 𝒇𝑚) (2) 

 

The traction forces result from the pressure (𝑃𝑖𝑣𝑜 
) 

applied at the boundary of the tissue 𝒕 = 𝑃𝑖𝑣𝑜 
⋅ 𝐧 , where 

n is a normal vector to the boundary (e.g., the arterial 

lumen or ventricular endocardium).  

Thus, satisfying this relationship and the traction 

boundary condition, the only unknown to be determined 

is the pre-stretch of elastin, which is left to be determined 

in the second stage of the algorithm, once solved for the 

forces that are experienced by elastin as  𝛻 ∙ (𝛔𝑒) = 𝒇𝑒. 

These forces will depend on the prescribed in vivo 

pressure prescribed for traction forces, and prescribed 

fiber pre-stretches and orientations.  

 

2.2. Stage 2: Prestressing algorithm 

    To determine the natural stress-free configuration of 

elastin Ω0
𝑒  and ultimately determine elastin pre-stretches, 

we coupled our approach with the Augmented Iterative 

Method (AIM), previously described in the literature [4]. 

Briefly, the principle of this algorithm is to find a 

reference configuration (stress-free, Ω0) so that, when 

subject to traction forces provided (𝒇𝑒), it deforms 

accordingly to approximate Ωivo. The AIM iteratively 

updates a reference configuration Ω0
𝑘+1 by subtracting the 

per node displacement vector (𝓡𝒌 = 𝒙𝑘 − 𝒙𝒌+𝟏) between 

the updated deformed configuration Ωk and the in vivo 

configuration, which is captured by a residual ℛ𝑘 =
‖𝑹𝑘‖. The algorithm stops when the residual falls below 

a defined tolerance 𝜖 (= 10−3), while the number of 

iterations k is a result of this convergence. Thus, 

iteratively running forward finite element FE simulation 

𝓢 expressed in Equation 3, providing net nodal forces 𝒇𝑒 

we can obtain 𝑿𝑒
𝑘 as the nodal coordinates for the stress-

free elastin configuration Ω0
𝑒: 

𝒙𝑘 = 𝓢 ((𝑿𝒆
𝒌, 𝟎), 𝒏𝒆𝒕 𝒏𝒐𝒅𝒂𝒍 𝒇𝒐𝒓𝒄𝒆𝒔) (3) 

 

2.3. Analytical validation 

A cylindrical geometry was considered to test the 

prestressing algorithm against an analytical solution of a 

stress-free configuration of elastin. We model an arterial 

segment as a cylinder (length l = 2.50 mm, inner diameter 

ri = 0.647 mm, wall thickness h = 0.04 mm) discretized 

into 1860 linear hexahedral elements. Collagen 

homeostatic pre-stretch 𝜆ℎ
𝑐 = 1.10 and a pressure of 

𝑃𝑖𝑣𝑜 = 13.98 kPa were prescribed. Only circumferential 

fibers were considered for simplification of the analytical 

resolution. Collagen energy strain function is modeled as 

in [1], with parameters c1
c = 235 kPa, c2

c = 4.08 kPa, and 

mass fraction ϕc = 0.33, and the amorphous elastin 

matrix is modeled as a neo-Hookean material by means of 

a simplified hyperelastic Ogden model from  with c1
e =

1600 kPa, c2
e = 0, ke = 4160 kPa, m1 = 2 and mass 

fraction ϕe = 0.67. We apply Dirichlet boundary 

conditions to constrain the displacement in the 

circumferential (𝒖 (𝒙)𝜽=𝟎) and axial directions 

(𝒖 (𝒙)𝒛= 𝟎) on one end of the cylinder.   

 

2.3. Left Ventricle prestressing 

We considered an idealized left ventricle (LV) mesh 

represented as a truncated ellipsoid (major epicardial 

radius 𝑎𝑒𝑝𝑖 = 20 𝑚𝑚, minor epicardial radius 𝑏𝑒𝑝𝑖 =

10 𝑚𝑚, and uniform wall thickness ℎ = 3 𝑚𝑚) 

discretized into 900 linear hexahedra. We modeled both 

collagen and cardiomyocyte fibers as fiber-reinforced 

hyperelastic materials with a preferred fiber orientation as 

in [1]. Collagen follows the four-fiber family model with 

circumferential, axial and two diagonal (±45º) directions 

with material parameters 𝑐1
𝑐 = 234.9 𝑘𝑃𝑎, 𝑐2

𝑐 = 4.08. 

Mass fractions for each collagen fiber direction as well as 

constituent mass fractions are equally distributed. 

Cardiomyocyte fibers follow a helix angle that varies 

continuously from +60º at the endocardium to −60º at the 

epicardium and its material parameters 𝑐1
𝑚 = 261.4 𝑘𝑃𝑎, 

𝑐2
𝑚 = 0.24 . Similarly to the cylinder case, elastin is 

modeled as an Ogden neo-Hookean material with c1
e =

89.71 𝑘𝑃𝑎, c2
e = 0, ke = 89.71 · 103𝑘𝑃𝑎, m1 = 2. The 

fiber pre-stretches prescribed were 𝜆ℎ
𝑐 = 1.062, and 𝜆ℎ

𝑚 =



1.10. Material parameters were taken from vascular G&R 

model [1] and pre-stretches from [6]. Baseline systolic 

pressure of 16𝑘𝑃𝑎 (= 120 𝑚𝑚𝐻𝑔) was prescribed on 

the endocardium boundary to obtain elastin effective 

forces. The AIM ran applying fixed Dirichlet conditions 

on the nodes in the base in axial and circumferential 

directions (𝒖 (𝒙)𝜽= 𝟎,  𝒖 (𝒙)𝒛=  𝟎;  𝒙 ∈ 𝜕Ω𝑏𝑎𝑠𝑒). 

 

3. Results and discussion 

3.1. Cylinder case – Analytical solution 

    We assessed the agreement between our method and 

the analytical solution. In Figure 1, the two-stage 

implementation is depicted. Providing the forces 𝒇𝑒 

obtained from the Stage 1, we contrasted our numerical 

solution for the inner radius (Ri) and thickness (Hi) of the 

undeformed configuration, given that analytically the 

circumferential stress in a thin wall cylinder can be 

expressed as σθ= P·ri/ℎ.  

Figure 1. Flowchart for the two-stage implementation to 

find the stress-free configuration of elastin. In Stage 1, 

elastin effective forces are computed. In Stage 2, the AIM 

is run to find the stress-free configuration of elastin. 

 

Numerically, we obtain that Ri = 5.90 · 10−1 mm and 

Hi = 4.16 · 10−2 mm, while the analytical ground truth 

values are 𝑅𝑖
𝐺𝑇 = 5.90 · 10−1 𝑚𝑚 and 𝐻𝑖

𝐺𝑇 = 4.17 ·
10−2 𝑚𝑚, showing an exact match for the inner radius 

and a small relative error (0.24%) for the thickness. The 

agreement between our numerical results and the 

analytical solution shows the accuracy of the AIM 

implementation in solving the fundamental 

mechanobiological equilibrium problem.  

 

3.3.  Left ventricle prestress 

The approach we provide can become useful to 

establish the stress-free state of elastin in tissues like 

myocardium, which is equally important to apply CMMs 

to study maladaptive G&R. We ran our implementation 

on an idealized LV as the in vivo geometry. It is worth 

noting that the material parameters used were taken from 

vascular G&R model developed in [1], while collagen 

and cardiomyocyte homeostatic pre-stretches were 

adopted from [6] which also were derived from vascular 

tissue, since CMM parameters for myocardium have not 

yet been inferred. In Figure 2, the stress-free 

configuration of elastin obtained with the AIM is shown. 

 

Figure 2. Cut view of the stress-free configuration of 

elastin (red) and in vivo LV geometry (dotted) obtained 

with the AIM implementation. 

The convergence of the AIM is shown in Figure 3. 

After 8 iterations, a minimum residual ℛ𝑘 = 4 · 10−4 was 

achieved, which is the minimum nodal difference 

between the original in vivo configuration and the 

updated in vivo geometry considering the resulting 

unstressed configuration of elastin subject to the effective 

forces obtained in the first stage of our implementation. 

 

4. Limitations and future perspectives 

This study has several limitations that provide a clear 

pathway for future research. Firstly, the material 

    
  
 



parameters used were illustrative and not specifically 

calibrated to myocardial tissue, since these have not yet 

been characterized for CMMs. Hence, the presented 

results cannot be considered physiologically relevant but 

rather a proof of concept of a forward method. Secondly, 

the imposed Dirichlet boundary conditions on the base of 

the ventricle, while necessary for numerical stability, 

introduce artificial constraints that prevent a perfectly 

satisfied global force balance, potentially influencing the 

local stress field in the elements at the base. Employing 

alternative conditions like Robin-type boundaries in 

future studies could mitigate this issue. Additionally, 

comprehensive benchmarking against other established 

pre-stress algorithms using a wider range of material 

models will be essential for rigorously validating the 

method's robustness and performance, as well as 

initializing long-term growth and remodeling (G&R) 

simulations with the calculated homeostatic state. Finally, 

to fully establish this framework, future work will focus 

on applying the algorithm to realistic, patient-specific 

geometries derived from medical imaging. 

Figure 3. Augmented Iterative Method (AIM) 

convergence upon achieving minimum nodal error  ℛ𝒌 ≤
𝝐  for 𝝐 = 10−3. 

5. Conclusions 

By applying continuum mechanics principles, the 

developed framework infers the constituent-specific 

homeostatic forces that define mechanical equilibrium. 

The coupling of this principle with a forward iterative 

approach such as the AIM provides a robust methodology 

to estimate the stress-free configuration of elastin. We 

have tested our implementation by comparing our 

numerical solution with the known analytical solution for 

a thin-walled cylinder, showing perfect agreement 

between them. Unlike backward methods that require 

more complex implementations within the solver, the 

presented method should be easy to implement in any FE 

solver as it only relies on iterative forward simulations 

until convergence is achieved. Our approach is directly 

applicable to left ventricular geometries to determine 

elastin's stress-free configuration that would enable 

further application of CMMs to study G&R in the cardiac 

tissue. 
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