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Abstract

Chagas disease, caused by the parasite Trypanosoma
cruzi, presents significant diagnostic challenges due to
asymptomatic impacts on heart health and limited re-
sources in the affected areas. We leverage a deep-learning-
based artificial neural network model to automate Cha-
gas disease screening using 12-lead electrocardiograms
from multiple datasets, including CODE-15, PTB-XL, and
SamiTrop. We incorporate an automatic hyperparame-
ter optimization and class imbalance solution combined
with 1D dilated residual neural network with squeeze-and-
excitation blocks. This approach is applied to the Phy-
sioNet 2025 Computing in Cardiology Challenge. Our
model, achieved a challenge score of 0.271, demonstrating
a ~4-fold improvement over traditional machine learning
approaches, which achieved a baseline of 0.062. Our find-
ings support the use of deep-learning based approaches
as a viable tool for scalable, automated Chagas disease
screening, particularly in low-resource clinical environ-
ments where traditional diagnostics are unavailable.

1. Introduction
Chagas disease, termed American trypanosomiasis, is a
chronic illness caused by the parasite Trypanosoma cruzi,
predominantly transmitted through triatomine insects (1).
Approximately 8 million people worldwide are infected
annually, mainly concentrated in Latin America. Migra-
tion patterns have begun to introduce Chagas disease into
non-endemic regions, including approximately 300,000
cases in the United States (2). Furthermore, around 13% of
the population in Latin America is at risk of infection, and
Chagas disease accounts for 670,000 disability-adjusted
life-years annually (1). Environmental and socioeconomic
factors significantly impact the epidemiology and trans-
mission of Chagas disease. Subtropical climates with high
humidity, warmer temperatures, and substandard housing
conditions proliferate the activity of Trypanosoma cruzi
parasites and human infection (3; 4).

The diagnosis of Chagas disease is a formidable chal-
lenge due to the asymptomatic or nonspecific clinical
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Figure 1. Spectrograms of ECG Data for Leads V1 and
V2 with examples from 2 subjects, one present with Cha-
gas and the other with Chagas absent. The brighter colors
indicate higher signal energy at the time–frequency, spe-
cially present in the example with Chagas.

presentation observed in acute and chronic indeterminate
phases. Once in the chronic phase, persistent inflammation
and damage to myocardial cells can occur in heart tissue
with the potential to lead to heart failure. Although sero-
logical diagnostic methods exist, such as enzyme-linked
immunosorbent assays (ELISA) and polymerase chain re-
action (PCR) testing, they are resource-intensive, often
leading to delayed detection and ineffective disease man-
agement for affected patients (2; 3).

Electrocardiograms (ECGs) are crucial for detecting
chronic Chagas cardiomyopathy. In Figure 1, we show
how distinguishable can be the ECG spectrograms from
a Chagas present and Chagas Absent patients. However,
manual ECG interpretation is prone to variability among
healthcare providers and costly time for interpretation. To
address these challenges, the 2025 George B. Moody Phy-
sioNet Challenge aims to advance research by providing
large-scale, annotated 12-lead ECG datasets and a stan-
dardized framework for developing automated methods for
Chagas disease detection (5; 6).



Figure 2. During preprocessing, ECG signals are resam-
pled, cropped/padded, and z-normalized, then passed as
input to the model.

In this work, we build on recent advances in Convo-
lutional Neural Networks (CNNs) and residual network
(ResNet) variants, which have achieved state-of-the-art
performance in ECG classification by extracting complex
temporal and spatial features from large datasets(6; 7).
Using the 2025 PhysioNet dataset, we apply a ResNet-
inspired deep-learning approach for automated Chagas
disease detection from 12-lead ECGs. Our objective is to
enhance screening availability, improve diagnostic consis-
tency and precision, and ultimately support better patient
outcomes.

2. Methodology
The following subsections present the model architecture
approach for Chagas classification. Our approach consists
of a ResNet Network for prediction. Training utilizes an
imbalance-aware strategy and precision-recall curve cali-
bration.

For comparison purposes, we experimented with al-
ternative machine learning methods, including a Ran-
dom Forest model combined with features extracted via
tsfresh.

2.1. Data
This study uses three data sets from the PhysioNet 2025
Challenge, each offering different demographic, geo-
graphic, and clinical characteristics relevant to the detec-
tion of Chagas disease. The CODE-15 data set com-
prises 345,779 ECG recordings from 233,770 patients, col-
lected through the Minas Gerais Telehealth Network in
Brazil. These recordings include self-reported cases of
Chagas disease and are available in 7.3-second or 10.2-
second durations, sampled at 400 Hz. 1.91% of the records
were labeled as Chagas-positive and 98.09% as Chagas-
negative (8). The PTB-XL dataset provides 21,799 ECG
records from 18,869 European patients, each 10.0 seconds
in length and sampled at 500 Hz. It contains only Chagas-
negative cases, making it valuable for training balanced
models and generalization (9). Finally, the SamiTrop
dataset contains 1,631 ECGs from 1959 patients, specifi-

cally validated for chronic Chagas cardiomyopathy, where
all cases are Chagas-positive. Specifically, it includes
women aged 50 to 74 years of age from lower socioeco-
nomic backgrounds, with recordings of 7.3 or 10.2-second
durations and a sampling frequency of 400 Hz, offering
high clinical relevance for Chagas-specific modeling (10).

2.2. Preprocessing
All raw 12-lead ECGs were standardized with a three-stage
preprocessing pipeline as shown in Figure 2. First, signals
were resampled to 500 Hz so that recordings from differ-
ent sources shared the same frequency content. Second,
to present a uniform input size, each record was converted
to a fixed 5120-length window. Traces shorter than the
set length were zero-padded, and longer traces were cen-
tered and trimmed accordingly. Third, we normalized each
lead by median-centering and median absolute deviation
(MAD) scaling, removing offset and placing amplitudes
on a common scale, robust to ECG outliers.

For lead ℓ with samples xℓ(t),

zℓ(t) = clip[−5,5]

(
xℓ(t)−median(xℓ)

MAD(xℓ) + 10−6

)
MAD(x) = median

(
|x−median(x)|

)
Here, the first equation highlights the z-normalization pro-
cess applied to all ECG signals. The clip[−5,5] interval
is applied on the z-score, capping standardized values at
±5 to suppress extreme outliers. The second equation de-
fines the median absolute deviation (MAD), which mea-
sures variability by taking the median of absolute devia-
tions from the median.

2.3. Model Architecture
We use a compact dilated residual 1-dimensional (1D)
ResNet CNN with squeeze-and-excitation (SE) and Group
Normalization (11; 12). The network processes the prepro-
cessed 12-lead ECG segment through three residual con-
volutional blocks. Each block contains a 1D convolution
(Conv1d) with a 3x1 kernel and increasing dilation rates
(1, 2, and 4), enabling the model to capture progressively
wider temporal contexts within the receptive field while
preserving signal resolution. This is followed by Group-
Norm layer to rescale ECG feature maps across leads, and
ReLU activation. When moving to the next residual block,
we use a 1x1 Conv1d. The ECG sequence length is gradu-
ally reduced between blocks via max pooling.

While training, data was processed as tensors below
(Length, Channels):

(5120, 12)
MaxPool−−−−−−−−→

Block 1 (d=1)
(2560, 64)

MaxPool−−−−−−−−→
Block 2 (d=2)

(1280, 128)
GlobalMaxPool−−−−−−−−→
Block 3 (d=4)

(1, 256)

Ultimately, the classifier head operates on the pooled
features by flattening them into a single vector and pass-
ing them through a fully connected neural network with a



Figure 3. From left to right, this figure depicts model architecture. The 1D ResNet processes each ECG segment through
three residual blocks with increasing dilation (1–4) to expand the receptive field. Each block applies GroupNorm, ReLU,
squeeze-excitation, and max-pooling. The flattened features feed a linear layer with sigmoid to produce a binary (posi-
tive/negative) prediction.

sigmoid activation to output the probability of Chagas dis-
ease. The model was implemented in Python 3.13.0 using
PyTorch 2.1.2.

2.4. Training and Inference
We trained the model using stratified 90/5/5 respective
train, validation, and test splits. To improve robustness,
we applied data augmentations including Gaussian noise,
scale jitter, and mixup. Training employed Focal Loss
(α = 0.5, γ = 1.5), which emphasizes rare positive cases
and mitigates the effects of the 1:30 positive–negative class
imbalance. We optimized the 1D ResNet model with
AdamW under a OneCycleLR schedule, helping regular-
ize data and avoid overfitting. OneCycleLR makes a single
learning rate sweep from short to high peaks to learn robust
detectors for Chagas. For stability on ECG sequences, we
enable exponential moving average (EMA) of weights to
reduce variance and yield better generalization. The final
training uses early stopping (patience = 4) to limit overfit-
ting.

In Table 1, we show the selected hyperparameters with
Optuna (30 trials) over augmentation metrics (noise, scale
jitter, mixup), optimizer settings (learning rate, weight de-
cay), and model depth (number of residual blocks). Af-
ter training, After training, we pick a single final decision
threshold on the validation split by maximizing F1 on the
precision–recall curve, and we use this fixed threshold at
inference to convert probabilities into class labels.

2.5. Evaluation
For consistency with the PhysioNet Challenge framework,
we submitted all trained models to the official challenge
organizers. The submitted model performance was evalu-
ated on a hidden test set and returned the Challenge Score,
which served as the primary criterion for ranking mod-
els. Since the Challenge setting included multiple com-
petitors and limited each team to only ten submission at-
tempts, careful model selection and tuning were necessary

Hyperparameter Value / Description
Sequence length 5120
Number of residual blocks 3
Base channel width 64
Dropout rate 0.26
Mixup coefficient 0.04
Noise sigma 0.02
Input scaling range [0.99, 1.01]
Stochastic drop probability 0.06
Classification threshold 0.53
Softmax temperature 0.58
EMA decay rate 0.99

Table 1. Final hyperparameter configuration for the 1D
ResNet model, obtained via Optuna optimization in the lo-
cal experimental environment.

before submission. While additional internal metrics (AU-
ROC, AUPRC, F1) were monitored during development,
the Challenge Score ultimately determined our compara-
tive evaluation.

3. Results
Results for our scoring submissions are in Table 2. The
best performance was obtained with a 1D SE ResNet
model, receiving a challenge score of 0.271 and AUROC
of 0.671. We were able to increase the challenge score sig-
nificantly from the baseline score performance of 0.062.
Through the iteration of multiple models, including Ran-
dom Forest classifiers with tsfresh-based feature extrac-
tion, we observed that traditional approaches reached sub-
stantially lower performance (e.g., 0.097 and 0.062 for the
Random Forest-based models).

4. Discussion
Our results suggest that a dilated 1D SE ResNet can learn
and discriminate features from 12-lead ECG data for auto-
mated Chagas screening. We also demonstrated how deep



Model (ID) Architecture HPO Score AUROC AUPRC Accuracy F1
Model 9 (2684) ResidualDilatedBlocks + SE Optuna 0.271 N/A N/A N/A N/A
Model 7 (2627) ResidualDilatedBlocks + SE Optuna 0.270 0.671 0.119 0.980 0.020
Model 8 (2617) No Residual 3-Block CNN Optuna 0.262 N/A N/A N/A N/A
Model 6 (2564) ResidualDilatedBlocks Optuna 0.236 0.677 0.094 0.977 0.098
Model 1 (2061) ResidualDilatedBlocks + SE Optuna 0.230 0.653 0.058 0.971 0.076
Model 5 (2560) ResidualDilatedBlocks Optuna 0.215 0.667 0.073 0.979 0.038
Model 2 (2443) Dilated Conv. Blocks Optuna 0.194 0.612 0.061 0.978 0.094
Model 3 (2342) RandomForestClassifier + tsfresh GridSearchCV 0.097 0.526 0.025 0.979 0.000
Model 4 (2494) ResidualDilatedBlocks + SE Optuna 0.050 0.500 0.021 0.979 0.000
Baseline Model RandomForestClassifier N/A 0.062 N/A N/A N/A N/A

Table 2. Model comparison across architectures and hyperparameter optimization (HPO). Reported are the PhysioNet
Official Phase Challenge Score and metrics (AUROC, AUPRC, Accuracy, F1).

learning architectures are more capable of capturing com-
plex temporal dependencies in ECG signals compared to
state-of-the-art machine learning models such as Random
Forest.

We noticed two main challenges during this project.
First, the 90/5/5 validation data split and its impact on
heavy calibration efforts. With the 1:30 class imbalance,
very few positive cases were in the 5% validation split,
which introduces statistical uncertainty in the precision–
recall curve and calibration performance. We also no-
ticed how limited computing resources can impact model
development. We explored Synthetic Minority Oversam-
pling (SMOTE) to mitigate the 1:30 class imbalance, but
applying it to thousands of 12-lead ECG sequences was
prevented by memory limits. As a result, we adopted a
lightweight sampling strategy with focal loss, a function
that down-weights easy negatives and gives more weight
to the rare positive cases, providing a reasonable improve-
ment for model learning despite the imbalance. Future
work, with robust computing resources, could revisit im-
balance handling in stratified split adjustments and syn-
thetic oversampling.

5. Conclusion
We demonstrate that a dilated 1D SE ResNet achieves ap-
proximately 4-fold gains over traditional machine learn-
ing baselines. We acknowledge that the current algo-
rithm is not as accurate as experts in detecting Chagas dis-
ease. Still, we showed that learning discriminative fea-
tures for Chagas disease directly from 12-lead ECGs is
possible. By incorporating imbalance-aware objectives,
the approach achieved competitive results in the PhysioNet
2025 Challenge under the constraint of limited submis-
sions. Our findings highlight the significant potential for
scalable Chagas disease screening in resource-constrained
areas.
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