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Abstract 

Thoracic Aortic Calcification (TAC) is a significant 

predictor of cardiovascular events, but it's often 

overlooked in routine CT scans. This study explores the 

use of these non-dedicated scans for opportunistic TAC 

detection and quantification.  

Our model was trained and validated on a dataset 

comprising 661 chest CT exams retrospectively collected 

from patients undergoing imaging for clinical indications. 

TAC regions were annotated by experts to serve as 

ground truth. 

We developed a deep learning model based on an 

enhanced 3D U-Net with residual blocks to automatically 

segment TAC and predict the Agatston calcium score. 

Using expert annotations as a reference, our model 

achieved strong performance, with a Pearson's 

correlation coefficient (ρ) of 0.87 ± 0.06 and a coefficient 

of determination (R²) of 0.76 ± 0.11.  

These results demonstrate that deep learning can 

reliably assess TAC from standard CT scans, turning 

incidental findings into actionable clinical insights for 

proactive cardiovascular risk assessment. 

 

 

1. Introduction 

Thoracic Aortic Calcification (TAC) is a marker of 

atherosclerosis, characterized by the deposit of calcium in 

the thoracic aorta wall [1]. It serves as a predictor of 

adverse cardiovascular outcomes, including stroke [1], 

[2]. TAC can be detected incidentally in computed 

tomography (CT) scans performed for other clinical 

purposes, such as pulmonary evaluation or coronary 

assessment, rather than being the primary reason for 

imaging. its presence and extent are often underreported 

during routine radiological assessments of chest or 

abdominal computed tomography (CT) scans performed 

for non-cardiac reasons [2].  

An automated tool capable of quantifying TAC offers 

an opportunity for early cardiovascular risk assessment 

and intervention. Accurate and automated detection of 

TAC can turn incidental findings into actionable insights, 

allowing clinicians to identify high-risk individuals 

without needing additional dedicated cardiac imaging. 

 Deep learning is an artificial intelligence method that 

learns from data and can be used to solve tasks 

automatically. Many studies have been published using 

deep learning to detect TAC in CT scans [3]–[7].  

Research in this area explores various approaches; 

some concentrate solely on quantifying aortic calcium as 

a cardiovascular risk indicator [3], [4], while others 

include multiple cardiac structures such as coronary 

arteries and heart valves [5]–[7].  

In this study, we examine the potential of using 

routinely acquired, non-dedicated CT scans for 

opportunistic detection and quantification of TAC. We 

developed a deep learning model based on the 3D U-Net  

architecture enhanced with residual blocks to 

automatically segment TAC and predict the Agatston 

calcium score. Our approach enables reliable 

quantification of calcification from standard CT scans, 

demonstrating the feasibility of integrating deep learning-

based TAC evaluation into routine imaging workflows. 

 

2. Methodology 

 This study used CT scans routinely collected at the 

Heart Institute (INCOR), located in São Paulo, Brazil, as 

part of a clinical research protocol approved by the 

Institutional Review Board (IRB) under #5970/24/181. 

INCOR is a specialized institute focuses on cardiac and 

pulmonary diseases. We collected 661 chest CT exams 

with arterial calcification acquired clinically from 2013 to 

2023 for multiple purposes. Each exam was annotated by 

specialists, indicating the calcium segmentation and the 

Agatston score. The dataset includes images from patients 

aged 19 to 96, with a slight female majority (55%). 

 Each exam was divided into windows measuring 

256x256x32 pixels. We segmented the mediastinum 

using the methodology described in [8]. We selected at 

least seven windows around the heart, using the 

mediastinum center as a reference. Then we selected 

enough windows to cover the entire mediastinum. Only 

windows with aorta calcifications were used during the 

training phase; in the test phase, all windows were used to 

perform the inference, and the test performance was 

evaluated using the entire exam.  

 We used five-fold cross-validation for model 

evaluation. The dataset was split into five equal parts 



(folds). In each of the five iterations, one fold was 

designated as the test set, while a different fold was used 

for validation during training. The remaining three folds 

were used to train the model. 

 We developed a model based on the U shape of the 

Unet [9] with residual blocks [10], schematized in Figure 

1. The proposed ResUnet architecture consists of five 

downsampling levels and five upsampling levels. The 

encoder and decoder are connected at each level to reduce 

the semantic gap and enhance learning convergence. Each 

level features a residual block with dilated convolutions 

to expand the receptive field. The number of filters in 

each convolutional layer varies depending on the level, 

starting at 16 in the first encoder level and doubling at 

each subsequent level. The final layer uses a softmax 

activation function to produce the segmentation output. 

We compared the proposed model (ResUnet) with the U-

Net 3D as a baseline, adapted from [9] to perform 3D 

process. 

It is important to notice that the proposed model is 

composed of fewer parameters compared to the Unet3D, 

as can be seen in Table 1.  

 

Table 1: Number of parameters in each model. 

 

Model Parameters 

ResUnet 18,289,396 

Unet3D 90,311,300 

 

 The models were designed to segment calcifications 

within the aorta and subsequently calculate the Agatston 

calcium score using equation 1.  

𝑨𝒈𝒂𝒕𝒔𝒕𝒐𝒏 𝒔𝒄𝒐𝒓𝐞 = ∑ 𝑨𝒊𝜶𝒊

𝑵

𝒊

 (1) 

Where A is the lesion area, α is a weight factor that 

depends on the lesion’s maximum Hounsfield Unit (HU), 

and N is the number of lesions in the exam [11]. 

 Performance was evaluated using Pearson’s correlation 

coefficient (ρ) and the coefficient of determination (R²), 

comparing the calculated Agatston scores obtained from 

the models’ outputs with those of the expert radiologist 

annotations as groud-truth labels.  

 

3. Results  

In Table 2, the comparison of R² and ρ between the 

calcium score annotated by the specialist and those 

obtained using the analysed models, ResUnet and 

Unet3D, are presented. The metrics are shown with their 

averages and standard deviations across the test folders. 

 

Table 2: Comparison of ResUnet and Unet3D 

performance, using R² and Pearson’s correlation 

coefficient (ρ). 

 

Model R² ρ 

ResUnet 0.76 ± 0.11 0.87 ± 0.06 

Unet3D 0.71 ± 0.13 0.84 ± 0.08 

 

Figures 2 and 3 present scatter plots comparing the true 

calcium scores (annotated by a specialist) with the scores 

predicted by the ResUnet and Unet3D models, 

respectively. The plots display results from the first fold 

only. To improve the visualization of small calcium score 

values, the figures are shown on a logarithmic scale. Zero 

Figure 1: Proposed ResUnet model architecture. 

 



scores were adjusted to 0.1 to allow proper representation 

on the logarithmic scale 

 

 
Figure 2: Log scale scatter plot between the true calcium 

score and the predicted by the ResUnet model. 

 

 
Figure 3: Log scale scatter plot between the true calcium 

score and the predicted by the Unet3D model. 

 

 

 

 

3. Discussion 

The proposed model demonstrates superior 

performance compared to the Unet3D architecture, as 

evidenced by the average among the folders presented on 

Table 2, R² = 0.76 ± 0.11 vs 0.71 ± 0.13 and ρ=0.87 ± 

0.06 vs 0.84 ± 0.08.  

The scatter plot for the first fold obtained with the 

ResUnet (Figure 2), compared with the one obtained with 

the Unet3D (Figure 3), shows less data dispersion and 

higher coefficients of determination (R²=0.82 vs. 0.72) 

and correlation (ρ=0.91 vs. 0.85). However, both models 

occasionally produce false negatives, reporting zero 

calcium where it exists. A potential source of this error 

could be the method used to select the windows around 

the mediastinum. Since the aorta can occupy a large space 

around the mediastinum, this approach may exclude 

significant areas of the examination, which could affect 

the model's accuracy. 

Our proposed model is significantly more efficient 

than the Unet3D, with nearly five times fewer parameters, 

as shown in Table 1. This reduction is crucial for two 

reasons: it lowers the computational resources required 

for training and inference in routine clinical settings, and 

it enhances the model's ability to generalize to new image 

distributions that may differ slightly from the training 

data. This improved generalization capability reduces the 

risk of overfitting. 

 

 

4. Conclusion 

 This work introduces a compact and efficient deep 

learning model for the automated segmentation and 

quantification of the thoracic aortic calcium score in 

routinely acquired images.  

 These findings support the feasibility of applying deep 

learning for reliable, automated assessment of TAC in 

routine CT exams, without requiring dedicated cardiac 

imaging. By transforming incidental data into clinically 

relevant information, this approach enables proactive 

cardiovascular risk assessment, with the potential to 

improve patient outcomes and enhance healthcare 

efficiency.  

 Our study highlights the transformative role of 

artificial intelligence in extracting unexploited clinical 

value from existing medical imaging, supporting a shift 

toward more preventive, scalable, and data-driven 

cardiovascular care. 
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