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Abstract

Chagas disease is a parasitic illness spread by tri-
atomine bugs that can cause serious heart problems. Mass
serological testing is costly, so automated early detec-
tion using ECGs is desirable as it is scalable and cost-
effective. As part of the George B. Moody PhysioNet Chal-
lenge 2025, our team (Chagas detector) utilized an ECG
foundational model (ECG-FM) pretrained on 1.5 million
ECGs, and finetuned only an added classification head,
leveraging the model’s existing feature extraction capabil-
ities, to detect Chagas disease from 12-lead ECGs. The
pipeline included signal preprocessing by re-sampling sig-
nals to 500 Hz, applying a 0.5 Hz high-pass butterworth fil-
ter, followed by powerline filtering, which was then passed
into a frozen ECG-FM that encodes the signal into a 768-
dimension vector. A classification MLP head, which com-
bines this vector with patient age and sex, was then fine-
tuned to output a binary probability for Chagas disease.
We train on all of the PTB-XL, SaMi-Trop, and CODE-
15% records. Our model received a Challenge score of
.323 (ranked ?) on the hidden validation set.

1. Introduction

Our team joined the George B. Moody PhysioNet Chal-
lenge 2025 to develop open-source algorithms that auto-
matically detect Chagas disease from ECG data [1, 2].
Although serological testing is the standard practice for
confirming Chagas disease, ECG-based detection helps to
classify patients to accommodate limited serological test-
ing capacities. To this end, our team, Chagas detector,
developed a pipeline that takes a 12-lead ECG and com-
bines traditional ECG pre-processing techniques with a
finetuned 90.4 million parameter deep-learning ECG foun-
dational model (ECG-FM) [3] to output a probability for
Chagas disease. This pipeline is trained on open source
ECG data provided by the challenge organizers [4–8].

Figure 1. Proposed Architecture

2. Methods

Our proposed architecture is shown in figure 1. The
pipeline consists of three parts: preprocessing the ECG
signal, encoding the signal using the ECG-FM model [3],
and passing in the resulting embedding along with demo-
graphic data into a multilayer perceptron (MLP) classifi-
cation head to output a binary probability for Chagas. For
training, we only update the MLP head, keeping the ECG-
FM model frozen. See table 1 for a table of our hyperpa-
rameters.

2.1. Data

To train our pipeline, we used the PTB-XL (fs=500Hz),
SaMi-Trop (fs=400Hz), and CODE-15% (fs=400Hz),
datasets where fs is a sampling frequency [4–6] . To find
the best architecture, we created a stratified internal train-
ing, internal validation, and internal test splits, with an
80%/10%/10% distribution, respectively; however the fi-
nal submitted model had the internal validation set com-
bined with the internal test set to form one larger internal
validation set.

2.2. Preprocessing

Since ECG-FM is trained on ECGs with a sampling fre-
quency of 500 Hz, we resampled our input signals to 500
Hz. We then pass the signal into the Python package Neu-



rokit2 [9] for ECG preprocessing which applies a 0.5 Hz
high-pass butterworth filter and powerline filtering. We
also obtain the age and sex of the patient represented by
the ECG from the associated header file, and we normalize
the age using the statistics obtained by the training data.
We obtain a 10 second window of the recording, where we
truncate the end of the recording if it is too long, or pad
the end if it is too short. This window as well as the demo-
graphic features are then passed on to the next step of the
pipeline.

2.3. Architecture and Finetuning

Table 1. Hyperparameters for ECG-FM Finetuning, BCE
means Binary Cross Entropy.

Hyperparameter Value
Data & Preprocessing

Unified Frequency 500 Hz
Window Time 10 seconds

Sequence Length 5000
Windowing Method Pad/Truncate End

Batch Size 16
Model & Architecture

Freeze Encoder ‘True‘
Demographic Features Age, Sex

Training & Optimization
Epochs 20

Loss Function BCE
Initial Learning Rate 1× 10−4

Linear Learning Rate Start Factor 1× 10−6

Linear Learning Rate End Factor 1
Warmup Steps 700

Final Learning Rate 1× 10−7

Dropout Rate 0.1
Checkpoint Monitor Val Challenge Score

In this paper, we utilize the ECG-FM model [3], a
foundational ECG model pretrained on 1.5 million ECG
records. We specifically use a model version already fine-
tuned on the MIMIC-IV-ECG dataset [10]. Our proposed
architecture includes ECG-FM followed by a MLP classi-
fication head with ECG-FM’s 768-dimension embedding
and patient age and sex as input. More specifically, this
classification head first applies dropout to the resultant
768-dim vector returned by ECG-FM with rate 0.1. Then,
we project the combination of this vector plus the demo-
graphic features to a dimension of 256, apply ReLU, apply
another dropout with the same rate of 0.1, and then reduce
the dimensions to 1, our final probability for Chagas.

For finetuning, we freeze the ECG-FM model, and only
allow the MLP classification head to be updated. We freeze
the ECG-FM model to prevent catastrophic forgetting, as

the pretrained model has already been trained on an ECG
dataset nearly 4 times larger than our ours.

We train the model for 20 epochs with binary cross-
entropy loss (BCE), and use the true positive rate in the top
5% of predicted probabilities (the Challenge metric) as our
validation metric. We save the checkpoint from the epoch
that scores the highest on our metric, and chose 20 be-
cause although the validation challenge score plateaued af-
ter epoch 13, we wanted to be absolutely sure about model
convergence. We use the AdamW optimizer [11], starting
at the conservative 1e-4. To reduce overfitting, we first ap-
ply a learning rate warmup of 700 steps, with a starting
factor of 1e-6 (meaning our actual starting learning rate is
1e-10) and after the warmup period, we use a cosine an-
nealing learning rate scheduler [12], with an ending learn-
ing rate of 1e-7. We trained with batch size 16.

2.4. Comparison with Other Challenger
Methods

Using a pretrained encoder backbone is a technique used
by other teams as well; however, they pretrain only on the
given training data itself. Since the challenge dataset only
provides approximately 350,000 records, we reasoned that
using a pretrained model with exposure to a dataset over
4 times larger would contribute to better performance, cut
training time required to pretrain our model, and would
save precious training data for finetuning.

3. Results

The challenge score in the internal test set and challenge
validation set were 0.425 and 0.323, respectively (table 2).

Table 2. Challenge scores for our selected entry (team
Chagas detector), including the ranking of our team on the
hidden test set. We used stratified 80/10/10 train/val/test
split on the public training set, repeated scoring on the hid-
den validation set, and one-time scoring on the hidden test
set.

Training Validation Test Ranking
0.425 0.323 ?? ??

4. Discussion and Conclusions

One of the challenge’s largest issues was label reliabil-
ity; the CODE-15% labels are considered weak as they are
not serologically validated, while also making up 93.60%
of the training set; on the other hand, SaMi-Trop has sero-
logically validated labels, and PTB-XL has patients from
geographical regions with negligble rates of Chagas. As
such, we experimented with training on just the PTB-XL



and SaMi-Trop datasets, with 5-fold training. This mas-
sively underperformed, as we received an official valida-
tion score of 0.081, compared to the 0.323 when adding
CODE-15% and training without k-fold.

Another attempt to overcome the label reliability is-
sue of CODE-15% involved the fact that the dataset has
cardiologist-validated labels for right bundle branch block
(RBBB) and first-degree atrioventricular block (1dAvb),
which are very strong indicators of Chagas [13]. As such,
we implemented multi-task learning, where for CODE-
15% records, the model has to predict Chagas as well
as RBBB and 1dAvb to ensure generalizability, and the
weighted loss across all three tasks are used as the final
batch loss. However, the model underperformed on the in-
ternal test set, getting a top score of 0.349 when using all 3
datasets, BCE loss, and 0.6, 0.2, and 0.2 task loss weight-
ing on the Chagas, RBBB, and 1dAvb loss, respectively,
compared to 0.426 from the main architecture.

Our internal test scores were also consistently higher
than the official validation scores (see table 3). Notably,
models trained without the weakly-labeled CODE-15%
data performed best internally but underperformed on the
official validation set, suggesting a domain shift between
our internal splits and the hidden challenge data. We also
observed that unfreezing ECG-FM led to lower results on
our internal sets, which is probably because the useful pre-
trained knowledge was being overwritten.

Our model could also benefit from a more hypertuned
sequence duration, as well as random padding or random
windowing. We also believe that finding strong features
besides demographics could improve the model; we did
also try selecting our own wide features, ranked for im-
portance using a random forest classifier; however, feature
extraction proved to take too long (over 72 hours for the
entire dataset), so it was not feasible under the challenge
rules. Since successful models predicting other conditions
have benefited greatly from strong feature selection, such
as the PRNA model from the 2020 PhysioNet Challenge
[14], which won first place in predicting 27 heart condi-
tions, many of which were indicative of Chagas (such as
RBBB and 1dAvb), we believe more work in extracting
features will drastically improve our architecture.

We also explored other architectures. We tried ensem-
bling a custom squeeze and excitation model (SE) with our
main proposed finetuned ECG-FM model. The SE model
by itself with multi-task learning had an internal test score
of 0.540 and an official validation score of 0.079, but when
ensembled with our finetuned ECG-FM model, the offi-
cial validation score was 0.250, our third best performing
model. This improvement over just the SE model high-
lights the importance of the rich pretraining knowledge of
the ECG-FM model in reducing the effects of overfitting.

We also tried a loss function optimizing for the chal-

lenge’s true positive rate metric by using a custom rank-
ing loss which we call ”Percentile Ranking Loss.” This in-
volves maintaining a running score threshold t which esti-
mates the top 5% (the Challenge metric cutoff) of all pre-
diction scores seen through training across all batches and
epochs. We use an exponential moving average to combine
every batch’s distribution of scores with other batches, to
smooth out outlier batches. Then, if positive samples are
below t plus some hyperparameter margin m, they are pe-
nalized, and if negative samples are above t−m, they are
penalized. Since t is inaccurate early in training since has
not seen many batches, during the warmup period, batches
calculate and use their own local version of the moving
average in place of t, while t continues to be updated. Un-
fortunately, this underperformed internally relative to tra-
ditional binary cross entropy, as you can see in the ”Per-
centile” loss category in table 3.

Table 3. Challenge scores for different architectures on in-
ternal test set, where Scenario 1 and 2 are training with all
data and training data excluding CODE-15%, respectively
(* indicates official validation score)

Encoder State/Loss Scenario
Internal

Test Score
Unfrozen/Percentile 1 0.335

Unfrozen/BCE 1 0.342
Unfrozen/BCE 2 0.515
Frozen/BCE 1 0.426 (*0.323)

Frozen/Percentile 2 0.485
Frozen/BCE 2 0.424
Frozen/BCE K Fold with 2 0.534 (*0.081)

We experimented with the use of a wide and deep trans-
former. This model consisted of a traditional transformer
model enhanced with RoPe attention [15]. When train-
ing with just the PTB-XL and SaMi-Trop datasets, we
obtained an official validation score of 0.284 (our second
highest score), with an internal validation score of 0.349,
which underperforms our finetuned ECG-FM model.

We also explored using other encoder models. We tried
using the PRNA model by passing our ECGs into the
PRNA model and then feeding the output into XGBoost
along with the 20 wide features that the model produces;
however, this received an internal challenge score of 0.22.
Some chronic cases of Chagas can present with normal
ECG findings [16], making us believe that extracted fea-
tures such as the outputs of the PRNA model might not be
representative of all cases in available datasets. Therefore,
a deeper and more complex feature extractor model similar
to ECG-FM may have more power to detect patterns that
are not captured by traditional ECG findings and features.

In an attempt to address this issue, we also experi-
mented with a transferring the knowledge of the PRNA
model to our more complex finetuned ECG-FM archi-



tecture. Specifically, during training, we added an MLP
adapter on top of the PRNA model to project the 27 fi-
nal logits down to a single value (the ”soft target”). Then,
we forward pass through our ECG-FM finetuning architec-
ture as usual, and produce a Chagas probability, which is
then compared to the soft target to calculate the distillation
loss. The combination of the distillation loss plus the nor-
mal BCE loss between the Chagas probability and actual
label forms the total loss. Finally, we only update the MLP
head on both the ECG-FM model and the PRNA models.
The top internal test score when we ran this knowledge
distillation pipeline combined with the multi-task learn-
ing objective described above was 0.331. The higher score
compared to the XGBoost model once again suggests that
deeper, more complex networks are required for Chagas;
however, we believe that the addition of the knowledge dis-
tillation performed worse than having just multi-task learn-
ing is either due to the limitations of the adapter, or perhaps
we need to find another layer of the PRNA model to gen-
erate our soft target. In conclusion, we demonstrate the
potential of adding classification heads on frozen founda-
tional ECG models in detecting Chagas. We show across
all of our tested methods that the massive amount of train-
ing data ECG-FM is exposed to allows it generalize to
Chagas detection effectively while also mitigating the ef-
fects of overfitting that limits our other attempted methods.
We provide different potential architectures, including the
wide and deep transformer and the custom SE model. We
finally discuss potential regularization techniques for train-
ing, including multi-task learning, ensembling, and knowl-
edge distillation with PRNA.
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