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Abstract

Signal Quality Indices (SQIs) are essential for identify-
ing usable ECG segments in long-term recordings. Most
SQIs are designed for general-purpose use and do not
account for the specific demands of feature extraction or
downstream analyses. In this work, we introduce a task-
specific SQI tailored to heart rate (HR) estimation. We
develop a labelling strategy that uses a beat detector to
classify 10-second ECG segments as Clean or Noisy based
on whether the derived HR is within 10% of ground truth.

Using a combination of synthetic, semi-synthetic, and
real-world ECG data, we trained and fine-tuned a 1D
ResNet to classify segments accordingly. The model
achieved F1 scores of 0.92 and 0.85 on internal test sets
(PhysioNet 2014 and MIT-BIH Noise Stress Test), and gen-
eralised well to an external test set (TELE ECG), with an
F1 score of 0.80. This framework presents an adaptable
method for building SQIs that are aligned to specific clin-
ical or analytical tasks, offering a more reproducible and
targeted alternative to existing approaches.

1. Introduction

ECG recording is a fundamental investigation in cardiol-
ogy. For many cardiovascular diseases, ECG measurement
is considered the ’gold standard’, offering critical informa-
tion for both diagnosis and monitoring of heart conditions
[1]. Specifically, this information includes anything from
simple summary measures such as heart rate (HR), to in-
formation on heart function based on subtler morphologi-
cal changes in the ECG.

Advances in wearable sensor technologies have en-
abled continuous recording of ECG in non-clinical envi-
ronments. However, ECG recorded outside clinical set-
tings—via chest or handheld devices—are susceptible to
noise caused by motion artifacts, poor electrode contact,
and environmental interference [2]. In noisy recordings,
signal quality assessment is essential to avoid extracting
false information. Manual inspection of signal quality is

an impractical task for long-term recordings, prompting
the need for automated Signal Quality Indices (SQIs).

Various SQI methods for ECGs have been proposed,
from rule-based thresholds to machine learning classifiers
[3]. These generally discriminate high- and low-quality
signals classifying them either as acceptable or unaccept-
able, but are often general-purpose and not tailored to spe-
cific feature extraction or analysis. The quality required for
signal analysis is task-dependent [4]. For example, detect-
ing atrial fibrillation often requires investigation of smaller
wave morphologies in the signal (e.g. p-wave), while HR
estimation primarily relies on QRS detectability [5]. By
generalising quality assessment across all types of ECG
feature extraction, there is a risk of excluding clinically
useful information or including misleading data, which in
turn undermine clinicians trust in wearable monitoring.

To address these differences, we propose an SQI that
is tailored to signal processing and analysis goals, rather
than a ’one-size fits all approach’. In this paper, we select
estimation of HR as the task, but the approach is generalis-
able to any task or processing pipeline in which appropri-
ate training labels are available.

2. Methods

Our task-specific SQI follows a two stage approach.
First, we label a large collection of training ECG seg-
ments as ‘Clean’ or ‘Noisy’ based on whether a specific
beat detector can estimate HR within a defined tolerance
of ground-truth (GT) HR. To deal with the limitation of ac-
curate labels for noisy data, we combine real-world ECG
data with synthetically generated data in which the GT beat
annotation is known. Second, we use this relabelled data
as input to a deep learning classifier that discriminates be-
tween Noisy and Clean ECGs, as shown in Figure 1.

The rest of this section outlines the datasets used for
model development and testing, the process for generating
labels and the pipeline for model training and evaluation.
10 seconds was selected as the segment length as input, as
it is a common interval length used for SQIs [4].



2.1. Datasets

We use a combination of synthetic, semi-synthetic and
real-world ECG datasets, using only single leads from
each. To be included, datasets required manually labelled
accurate beat annotations and some variation of noise:
• Synthetic Data: Generated using an open-source sim-
ulator with added noise (e.g., HR variability, white noise,
power-line interference, motion artifacts) [6], providing di-
verse signals with known beat locations.
• MIT-BIH Noise Stress Test (NST): Semi-synthetic
ECGs created by adding calibrated baseline wander, mus-
cle, and electrode motion artefacts to clean signals, alter-
nating with clean segments [7]. Additional augmentations
increased variability.
• PhysioNet 2014 Challenge Dataset: 100 half-hour
ECGs used for fine-tuning and evaluation, split into 10-
second windows [8]. Augmentations were applied to im-
prove generalisability.
• TELE ECG (external validation): 250 telehealth
ECGs with dry electrodes; only annotated segments were
used. Served solely for external validation [9].

2.2. Labelling process

We used the Neurokit2 detector for automatic beat de-
tection, which is widely adopted in research [10]. The fol-
lowing process was implemented, as outlined in Figure 2:
1. Apply a 0.5–150 Hz bandpass filter to remove baseline
wander and high-frequency noise, consistent with ECG
preprocessing standards.
2. Detect beats using the NeuroKit detector.
3. Detected beats are matched against GT beat locations.
If more than 50% of detected beats fall within 50 millisec-
onds of GT beats, the segment proceeds to the next step;
otherwise, it is labelled as Noisy. This step prevents misla-
belling segments as Acceptable when HR values coincided
by chance, despite poor underlying beat detection.
4. HR is calculated from both the GT and detected beats.
If the beat-derived HR is within 10% of the true HR,
the segment is labelled Clean; otherwise, it is labelled as
Noisy. 10% was selected based on previously reported
standard thresholds for HR monitor accuracy [11].

2.3. Model Development

We implemented a 1D ResNet convolutional neural net-
work (CNN)1 to classify 10-second ECG segments as suit-
able or unsuitable for HR estimation, by labelling them
as Noisy or Clean. The architecture consists of an initial
convolutional layer with downsampling and batch normal-
isation, two residual blocks with increasing feature maps

1Code available at: https://github.com/Syveraron/Task-specific-SQI.git
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Figure 1. The framework for building a task-specific
SQI for extracting accurate HR. Data input components
are shown in green whilst model development is shown in
blue.
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Figure 2. The process for assigning Clean or Noisy labels
to signals, as described in 2.2.

(32 and 64 filters respectively), each with skip connections
and a final sigmoid output for binary classification.

Before input to the model, all signals were resampled to
500Hz and normalised using min-max scaling. The net-
work was pre-trained for 80 epochs using the synthetic
data before fine-tuning with the real-world data (MIT-BIH
NST and the PhysioNet 2014 Augmented Challenge set)
(Figure 1). The fine tuning set was split 60/20/20 for
training, validation (threshold optimization), and testing,
respectively. During fine-tuning, early layers were frozen
for the initial epochs and later unfrozen. The model was
trained using binary cross-entropy loss. Adam loss op-
timiser was used and a learning rate scheduler based on
validation loss was used. The final decision threshold was
tuned to optimise the F1 score on the validation set.



3. Results

3.1. Dataset Overview

In Table 1 we report the number of 10-second ECG
segments included from each dataset, along with their
sampling frequencies and the proportion of segments la-
belled as ’Clean’. Two large randomly generated synthetic
datasets were used for pre-training with different sampling
frequencies to match that of the real-world datasets. The
Physionet 2014 and MIT-BIH NST were used for fine-
tuning and evaluation while the TELE ECG dataset was
held out entirely for external validation.

Table 1. Dataset composition, sampling frequency, and
proportion of Clean signals

Dataset Hz Number of Signals % Clean
Synthetic 500 40,000 37.4%
Synthetic 2 360 32,560 41.8%
MIT-BIH NST 360 804 39.2%
PhysioNet 2014 360 4,452 64.7%
TELE ECG 500 416 43.8%

3.2. Performance on Internal Test Sets

After training and fine-tuning, the model was evalu-
ated on held-out partitions from the real-world and semi-
synthetic datasets. A decision threshold of 0.38 was se-
lected based on optimisation of the F1 score.

Across all internal test data, the model achieved an over-
all accuracy of 0.90 and an F1 score of 0.90 (Table 2).
Performance was balanced across precision (0.90) and re-
call (0.90), suggesting the model could reliably distin-
guish between Clean and Noisy segments. When stratified
by dataset, F1 scores were 0.91 for PhysioNet 2014 and
0.85 for MIT-BIH NST, indicating slightly stronger per-
formance on the semi-controlled PhysioNet data but still
robust performance in noisier conditions.

Table 2. Model performance on internal test sets.
Dataset Acc. Prec. Rec. F1
PhysioNet 2014 0.912 0.915 0.912 0.913
MIT-BIH NST 0.847 0.846 0.847 0.846

3.3. Performance on External Dataset

The model generalised well to the unseen TELE dataset,
achieving an accuracy of 0.81, F1 score of 0.80, and AU-
ROC of 0.86. Precision (0.81) was lower than recall (0.87),
suggesting that the model is conservative in identifying
Clean signals: it correctly detects most noisy signals but
is more cautious when labelling segments as usable.

3.4. Incorrect Classification

To understand model behaviour, we examined incor-
rectly classified signals. Figure 3 shows two examples.
Signals incorrectly labelled as Noisy often had small R-
peaks and baseline drift, despite otherwise clean morphol-
ogy. In contrast, some noisy signals incorrectly labelled
as Clean had large R-peaks, which may have dominated
the model’s decision despite high-frequency noise that the
Neurokit detector struggles with. This suggests the model
relies heavily on R-peak prominence, potentially overlook-
ing components such as higher-frequency noise.

Figure 3. Example of incorrectly classified signals from
the external dataset. Top: a ’Clean’ signal, with correctly
detected R-peaks, incorrectly classified as ’Noisy’. Bot-
tom: a ’Noisy’ signal, with poor R-peak detection, mis-
classified as ’Clean’.

4. Discussion

This project presents a task-specific framework to ECG
signal quality assessment, aimed specifically at heart rate
estimation using a defined beat detector. By aligning
signal quality assessment with analysis goals, we move
away from general-purpose SQIs towards a targeted, re-
producible approach.

Despite using only a modest amount of real-world data
for fine-tuning, our model achieved good performance on
both internal and external test sets. Results show that pre-
training a deep learning model on synthetic ECG signals
simulating realistic noise provides a robust foundation for
learning generalisable features. Given the difficulty of ob-
taining beat locations in noisy real-world data, synthetic
signals were especially useful for HR estimation. Per-
formance on edge cases suggests synthetic noise may not
fully capture real signal variability, and augmenting real-
world data may be key to bridging this gap. Encouragingly,
the model generalised well to an unseen external dataset
collected using different sensors (dry electrodes), indicat-
ing robustness to different sensor modalities.



A key benefit of this approach is its potential for real-
world application in accurate ECG processing. In long-
term ECG monitoring, manual inspection of signal quality
is impractical and general purpose SQIs may not reliably
segment signals for HR estimation. This SQI offers an au-
tomated way to flag periods unsuitable for HR estimation
that could be deployed within clinical processing pipelines.
In doing so, it may increase clinicians’ trust in HR derived
from wearable ECG’s and support the safe integration of
this data into clinical workflows.

More broadly, this work presents a generalisable
pipeline for task-specific SQI development, linking sig-
nal quality assessment directly to the goals of the analysis.
Previous research has developed processing pipelines tai-
lored to HR estimation from ECGs, fusing multiple SQIs
and HR from multiple ECG leads [12]. While also present-
ing a generalisable framework, our approach differs in its
task-specific design, providing a modular framework spe-
cific to the signal processing pipeline itself. For example,
it can be used with different beat detectors, stricter thresh-
olds (e.g., <5% HR deviation), or extended to other phys-
iological measurements such as respiratory rate or heart
rate variability, and applied across sensor modalities.

A limitation of our work is that this considers a very sim-
ple pipeline where relatively simple preprocessing is em-
ployed. Alternative pipelines that include additional pre-
processing can be used in our labelling process, and should
be tested in future to demonstrate utility in more realistic
scenarios.

To conclude, this work highlights the importance of
task- and pipeline-specific signal quality labelling and
offers a reproducible approach for future SQI develop-
ment. Future work will implement a robust pre-processing
strategy before benchmarking this SQI against existing
general-purpose SQIs to determine comparative perfor-
mance in labelling signals for accurate HR extraction.

Acknowledgments

This work was supported by UK Research and Inno-
vation (UKRI) [CDT grant number EP/S024336/1]. We
also acknowledge the contributors and patients whose data
were made publicly available via PhysioNet.

References

[1] Stracina T, Ronzhina M, Redina R, Novakova M. Golden
standard or obsolete method? review of ecg applications in
clinical and experimental context. Frontiers in Physiology 4
2022;13:867033. ISSN 1664042X. URL https://pmc.
ncbi.nlm.nih.gov/articles/PMC9082936/.

[2] Syversen A, Dosis A, Jayne D, Zhang Z. Wearable sen-
sors as a preoperative assessment tool: A review. Sensors 1
2024;24:482. ISSN 14248220.

[3] Satija U, Ramkumar B, Manikandan MS. A review of

signal processing techniques for electrocardiogram signal
quality assessment. IEEE reviews in biomedical engineer-
ing 2 2018;11:36–52. ISSN 1941-1189. URL https:
//pubmed.ncbi.nlm.nih.gov/29994590/.

[4] Syversen AB, Zhang Z, Batty JA, Kaisti M, Jayne D, Wong
DC. Assessment of ecg signal quality index algorithms us-
ing synthetic ecg data. Computing in Cardiology 2024;51.
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