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Abstract

Mechanistic electrophysiology simulations provide de-
tailed insights into arrhythmia mechanisms but are hin-
dered by high computational cost. Recent emergence of
reaction-eikonal models rely on efficient surrogates for the
diffusion current to maintain scalability, although exist-
ing approximations struggle to generalize across heteroge-
neous conduction properties and complex arrhythmic dy-
namics. This paper presents adalNR — a novel implicit
neural representation (INR) for the diffusion current that
is adaptive to local conduction characteristics. Trained
and tested on data from a simulated reentry scenario in
cardiac tissue, we demonstrated the ability of adaINR to
efficiently capture the key features of diverse diffusion cur-
rent morphologies - including planar, curved, and collid-
ing wavefronts - with an average mean squared error of
33.8 (uA/cm?)2. It has the potential to facilitate faster
and more scalable simulations of complex arrhythmias.

1. Introduction

Cardiac electrophysiology (EP) simulations have be-
come valuable tools for understanding arrhythmia mech-
anisms and supporting patient-specific therapies [1, 2].
These simulations are typically based on the monodomain
model, which resolves the spatiotemporal dynamics of the
transmembrane voltage V;,, across cardiac tissue. A major
computational bottleneck is the diffusion term due to the
need for fine spatiotemporal grids to resolve rapid, local-
ized changes in diffusion currents, which are essential for
accurately capturing wavefront propagations.

Reaction-eikonal models have emerged to approximate
wave propagation by solving the eikonal equation for ac-
tivation times [3]. These activation times serve as a ba-
sis for approximating the diffusion term, allowing simu-
lations on coarser meshes with substantially reduced run-
time. One representative is the Diffusion-Reaction Eikonal
Alternant Model (DREAM) [4]. DREAM replaces the dif-

fusion term with a time-shifted triple-Gaussian waveform
aligned to the activation time. This surrogate captures the
typical biphasic shape of diffusion currents (DCs) during
planar wavefront propagation. However, amplitude and
time course vary in complex arrhythmias and tissue struc-
tures. For example, for curved wavefronts, the shape be-
comes broader and more variable with usually smaller am-
plitudes; for colliding wavefronts, the course becomes al-
most monophasic with a dominant positive peak and lit-
tle to no negative component. While DREAM effectively
models planar wavefronts, its fixed Gaussian template is
less suited for highly fragmented or reentrant wavefronts.

In this work, we propose a neural surrogate model for
the DC to replace template-based approximations in hy-
brid EP models while retaining biophysical ionic dynam-
ics. Specifically, we introduce adaINR with two innova-
tions: (i) we represent DC as a continuous function over
time ¢ (1gifr) using an implicit neural representation (INR),
enabling flexible approximation without rigid spatial or
temporal discretization; and (ii) we adaptively generate the
weight parameters of the INR with a hypernetwork based
on local conduction information, including local activation
times (LATs) and diastolic intervals (DIs). As a proof of
concept, we trained and tested adaINR on simulated data
of reentrant wave propagation in caridac tissue, demon-
strating its ability to capture diverse and physiologically
relevant DC morphologies.

2. Methods

Fig 1 outlines the key components in adaINR, which in-
cludes a compact INR representation of Iy adapted by a
hypernet based on local features.

2.1. Graph convolution

To generalize across different geometries, the tissue was
represented as a graph, where each node ¢ is associated
with a feature vector x; € R?, containing spatial coordi-
nates, LAT, DI, and a binary indicator for boundary nodes.
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Figure 1: Schematic of adaINR: graph convolution pro-
cesses local features of a node and its neighbors (coordi-
nates, LAT, DI) to generate an embedding, which a hyper-
network maps to the weights of an implicit neural repre-
sentation (INR) to predict I4(¢) at any time ¢.

Let & be the set of edges between neighboring nodes 7 and
J» with edge attributes e;; representing the difference in
the LAT between the nodes. We applied a spline-based
graph convolution to incorporate local neighborhood infor-
mation. For each node ¢, an embedding c; was computed
by aggregating features across its neighbors:
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where N (i) are the neighbors of node ¢, W is a learnable
weight matrix, B is a B-spline basis function that trans-
forms the edge attribute ¢;; into a modulating factor, and
p(+) is a non-linear activation function. This embedding
captures local conduction patterns and enables the model
to account for spatial dependencies, while naturally adapt-
ing to complex tissue geometry.

2.2. INR representation of /s

To estimate Iy continuously in time, we used an INR,
which models I4i(t) as a function that can be queried
at arbitrary time points. This enabled flexible modeling
of rapid waveform changes without the need for time-
stepping or large memory storage. Specifically,

Taite(t) = fo(t), 2

where fy is a 3-layer MLP with weights 6. The first layer
maps the scalar input ¢ to 64 dimensions with Leaky ReLLU
activation. The second layer reduces it to 32 dimensions
(also with Leaky ReLU). The final layer projects to a scalar
bounded by tanh activation.

2.3. Hypernetwork for Adaptive /g

To account for spatial variability in I4; morphology, the
INR weights 6 were generated per node using a hypernet-
work conditioned on the local embedding c;:

0 = hg(ci), 3)

where hg is a 5-layer MLP with Leaky ReLU activations
and weights ¢. This setup enabled the model to adapt DC
predictions to local conduction properties, improving ac-
curacy in heterogeneous regions.

2.4. Training Objective

To train the model to capture the full range of I, mor-
phologies, we need to ensure that representative Iy mor-
phologies receive adequate attention from the model dur-
ing training. To this end, we first apply principal compo-
nent analysis and K-means clustering to the /g data avail-
able for training, to group waveforms into distinct clusters
of morphologies. As seen in Fig. 2, clusters 5 and 6 are
located in regions far from the center of the reentrant cir-
cuit, where wavefronts propagate nearly planar and pro-
duce sharp, biphasic DC profiles. Clusters 1-4 lie closer to
the core, where wavefronts become increasingly curved,
resulting in broader, lower-amplitude, and more variable
signals. Cluster 7 is found along tissue boundaries and re-
flects wavefront collisions, while cluster O corresponds to
subthreshold activity with minimal temporal variation.

Capturing the locally varying morphologies in clusters
1-4 and 7 is key to advancing beyond template-based sur-
rogates such as the one used in DREAM. These clusters,
which we defined as regions of interest (ROIs), are critical
for accurately simulating reentrant dynamics but were un-
derrepresented in the present dataset. To address this im-
balance, we adopted two training strategies: (i) construct
mini-batches that include samples from all clusters, and
(ii) use a weighted mean squared error (wM SE) loss that
scales each sample inversely to its cluster size:
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where 7' is the number of sampled time points, N is the
number of training samples, and fdiff(t) the model predic-
tion. The weight wy, is inversely proportional to the size
of the cluster node 7 belongs to, emphasizing spatially rare
but physiologically important morphologies.
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Figure 2: Spatial cluster map for a representative activation
cycle. Clusters reflect distinct I morphologies. Nodes
without activation in the current cycle are shown in black.

3. Experiments and Results

3.1. Data & Implementation Details

The approach was evaluated on a 2D cardiac tissue
dataset generated using the openCARP simulator [5] with
an S1S2 pacing protocol. The 51.2mm X 51.2 mm tissue
slab was discretized into 72,449 nodes at 200 pm resolu-
tion. The dataset had up to ten activation cycles per node,
including both, planar and reentrant wavefronts. Each
node was annoted with spatial coordinates (x,y), neigh-
boring nodes, I during the depolarization phase of Vi,
LATSs defined as the time when V,, crosses -35mV with
positive slope, and DI measured as the interval between V,
drops below -40 mV with negative slope and the LAT of
the next activation. Each node-activation pair was treated
as an independent training instance.

For validation and testing, five disconnected regions of
1,000 nodes each were randomly sampled. The rest were
used for training. To facilitate numerical stability and ro-
bust gradient flows during training, we normalized all in-
put features including spatial coordinates, LAT, and DI,
as well as Iy amplitudes. We used the Adam optimizer
with a learning rate of 1073, and the best model was se-
lected based on validation loss. adaINR was evaluated us-
ing node-level mean squared error (MSE) and the correla-
tion coefficient (CC) between Iy (t) and Igige(¢).

3.2. Results

An important assumption for our locally adaptive INR
is that the temporal morphology of a Iy can be inferred
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Figure 3: t-SNE visualization of node embeddings learned
via local graph convolution, with points labeled according
to I4ir morphology clusters.

Table 1: Mean squared error (MSE) and correlation coeffi-
cient (CC) of adaINR predictions across Igig morphology
clusters, reported as mean + std. Best (blue) and worst
(red) performing clusters are highlighted.

Cluster MSE ((A /cm?)?) CcC
0 98.36 + 107.35 0.17 £0.23
1 114.52 +62.49 0.67 £0.19
2 29.51 +£23.98 0.95 £0.04
3 34.79 4+ 23.95 0.95 +£0.03
4 37.71 + 31.86 0.97 4+ 0.05
5 52.56 £+ 27.18 0.97 £0.02
6 47.59 + 29.22 0.98 +0.02
7 64.79 + 58.64 0.89 £ 0.09

from local conduction features and the spatial relationship
of a node and its neighbors. To verify this, we examined
the embedding c; extracted via graph convolution across
all nodes (see Fig 3). Clear separation was observed be-
tween the 4 morphology clusters identified in the data.
ROIs were well distinguished from planar wave clusters 5
and 6, with some overlap between clusters 1 and 5 near the
rotor. This suggests that the embeddings effectively cap-
ture local morphological differences and are well-suited
for generating INR weights to model diverse diffusion cur-
rent profiles.

Table 1 summarizes the quantitative results of adaINR
in Iy prediction, and Fig. 4 provides visual examples. As
shown, adaINR accurately reconstructed sharp, biphasic
Lgifr signals of planar wavefronts (cluster 6), capturing rel-
atively high-amplitude and well-defined wavefront profiles
with low MSE and the highest CC value. It captured lower-



amplitude, curved morphologies (clusters 1-4) mostly with
similarly strong performance, represented as high CC and
low MSE values (lowest MSE in cluster 2, second closest
to the rotor). However, cluster 1 posed the greatest chal-
lenge, with occasional underestimation of peaks or broader
waveform transitions, leading to higher MSE and lower
CC values. Prediction in the boundary regions with wave-
front collisions (cluster 7) also proved difficult, the pre-
dominantly monophasic morphology remained captured.
adaINR'’s forward pass requires only 6.1 s to generate pre-
dictions for a test set of 5,000 nodes across 10 activation
cycles, measured on a single commodity GPU.

4. Discussion

This work presented adaINR as a novel surrogate for
diverse DC morphologies. With local graph convolution,
adalNR can be directly applied to a node and its neighbors
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Figure 4: Mean =+ standard deviation of the ground truth
(GT) and predicted (Pred) Iy for representative clusters.

on different geometries. With feedforward hypernetwork
and the compact INR, adaINR is computationally efficient.
It thus provides an important building block for hybrid
neural-mechanistic EP models to support high-resolution
mechanistic investigation of complex arrhythmias.

As a proof of concept, this work considered simulation
data on a 2D grid of cardiac tissue, and the training of
adaINR assumed access to true Iy signals for supervi-
sion. Future works will consider complex 3D cardiac ge-
ometries, and incorporate adaINR into a mechanistic EP
model where direct supervision of 4 is not available; in-
stead adaINR needs to work with Eikonal calculation of
activation times and mechanistic formulation of ionic cur-
rents to resolve transmembrane voltages.
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