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Abstract

Many models of cardiac action potentials (APs) have
been developed, but identifying appropriate equations and
parameter values to match particular datasets remains a
challenge. To reproduce cardiac AP data, we consider
the use of a data-driven approach, Sparse Identification
of Nonlinear Dynamics (SINDy). SINDy is a sparse re-
gression method that uses a set of chosen candidate func-
tions to produce a differential-equations model that fits the
provided data. Terms with small coefficients are itera-
tively discarded to reduce model complexity while main-
taining an accurate fit. We analyzed SINDy’s effectiveness
in fitting synthetic AP data from two-variable models with
polynomial terms, including the FitzHugh-Nagumo model
(FHN), its cardiac variant that avoids hyperpolarization
(FHN-c), and two additional cardiac-modified FHN mod-
els that can display complex dynamics. We found that
SINDy could effectively reproduce the equations for each
model, with the cardiac variants displaying greater sen-
sitivity to parameter and optimizer choice than the base-
line FHN model. Finally, we tested the ability of SINDy
to handle the introduction of time-dependent stimulus cur-
rents, including identification during alternans dynamics.
Overall, SINDy shows promise as an approach for iden-
tifying differential equations models to match cardiac AP
data while balancing model complexity and accuracy.

1. Introduction

Since the development of the first differential-equations-
based cardiac action potential model by Noble [1]], mod-
els of cardiac cell electrophysiology have been created pri-
marily in a mechanistic fashion. In this framework, mea-
surements are used to formulate mathematical descriptions
of ion channel dynamics, often following the formalism
of Hodgkin and Huxley [2], and are integrated with in-
tracellular ion concentration dynamics to describe the be-
havior of the action potential. The most detailed models
can have dozens of ordinary differential equations (ODEs)
with hundreds of parameters, leading not only to concerns

about model identifiability but also to difficulty under-
standing the mechanisms underlying observed model prop-
erties and behavior.

Recently, data-driven approaches for discovering equa-
tions that describe dynamical systems have been postu-
lated. Such methods may offer opportunities for devel-
oping simpler model forms that directly fit specific ex-
perimental or clinical data. However, it has historically
been difficult to obtain interpretable results from machine-
learning methods. In neural networks, for instance, the
trained model consists of a sum of weighted activation
functions containing a large number of terms, which can-
not easily be translated into a human-readable set of equa-
tions [3]]. To address this problem, Brunton and Kutz et al.
introduced Sparse Identification of Nonlinear Dynamics
(SINDy) in 2016. Their approach utilizes a priori under-
standing of the physics behind a problem to inform which
functional forms could feasibly show up in a system of
ODE:s describing the dynamics of interest [3]].

In this paper, we first demonstrate the use of SINDy to
recover action potentials from simple cardiac models and
study the effect of algorithmic choices. We then test the
ability of our cardiac SINDy implementation to reproduce
paced dynamics including alternans, in which action po-
tentials vary in duration.

2. Methods

SINDy: SINDy utilizes a set of candidate functions ©
weighted by a coefficient matrix = in order to fit a given
dynamical system of the form X = f(X(t)) to data, which
is described by the following equation [3|:

X = OF. (1)

The SINDy fit is accomplished by applying a least-
squares fit to the data combined with an L1 regularization
term (weighted by the coefficient « in the formulation be-
low), which penalizes large coefficients [3]:

min[|X — O[3 + o[ E]. 2



The SINDy framework was implemented via the Python
library PySINDy, which offers flexibility in defining func-
tion libraries, selecting an optimizer, and integrating with
other machine-learning methods [4].

Cardiac Electrophysiology Models: For this proof-of-
concept work, test data were generated from phenomeno-
logical two-variable models that have been used to de-
scribe cardiac action potentials. As simple test cases, the
FitzHugh-Nagumo (FHN) model [5] (Eqns. 1a and 2a in
Table [T} with p fixed to 1) was used, along with a cardiac-
inspired FHN modification (FHN-c, Eqns. 1b and 2a) that
prevents hyperpolarization [6]. For additional test cases,
we generated scenarios using the 4-parameter (Eqns. la
and 2b) and 7-parameter (Eqns. 1a and 2c) Velasco-Fenton
models [[7] (VF-4 and VF-7, respectively), including an al-
ternans case with the VF-4 model.

Table 1. Model equations.

Label Equation

la = pulu—a)(l—u)—v

b t=ulu—a)(l—u)—uv

2a v =€(Bu—yv —9)

2b v =e(u(f —u) —v)

2¢c v=€((8—u)(u—")—3dv—20)

When stimuli were applied, square-wave excitations
with durations of 5 time units and magnitudes of 0.12 nor-
malized voltage units were added to the voltage variable
for each of the four models to generate action potentials.

To generate the data, SciPy’s odeint integrator, an
adaptive, variable-method solver based on the LSODA
Fortran library [8]], was used with a maximum step size
of 0.1 for 2,000 time units. A non-autonomous function
was added to the voltage variable u before solving to han-
dle stimuli. The resulting dependent variables u and v,
along with the independent time values ¢, were passed to
PySINDy instances. When a single action potential was fit
from a super-threshold initial condition (no stimulus), ei-
ther default or degree-3 polynomial function libraries were
used. When stimuli were applied, custom libraries contain-
ing two separate sublibraries were used, one for functions
of the voltage and/or recovery variables and one contain-
ing only time-dependent terms (including only the stimu-
lus voltage term, the timing of which is known from the
dataset), to allow the PySINDy instance to recognize the
functional forms of these user-defined terms.

Each PySINDy instance was tested across a variety of
optimizers, including STLSQ (Sequentially Thresholded
Least Squares), SR3 (Sparse Relaxed Regularized Regres-
sion), and SSR (Stepwise Sparse Regression). STLSQ and
SR3 require manually specified threshold parameters in
addition to the L1 regression coefficient «, while SSR only

requires a value for ov. The first two methods discard any
terms with coefficients below the threshold at once, while
SSR iteratively discards a single term with the lowest mag-
nitude coefficient, causing differences in convergence be-
havior depending on the use case.

Python code implementing the procedures described in
this section can be found in the GitHub repository included
in the references [9].

3. Results

As a first test scenario, we considered fitting single ac-
tion potentials produced by the four models using initial
conditions above the threshold of excitation, such that the
additional complexity associated with adding the stimulus
current in SINDy was not necessary. The results of fit-
ting with various feature libraries and optimizers for the
FHN, FHN-c, VF-4, and VF-7 models are shown in Ta-
ble @ For the FHN model, the correct equations could be
identified with any of the three chosen optimizers as long
as the function library was restricted to degree-3 polyno-
mials. However, using the STLSQ and SR3 optimizers re-
quired more careful threshold parameter selection, a dis-
advantage which the SSR optimizer did not have because
SSR discards one term at a time until the desired model
complexity is reached. Thus, it requires no fixed threshold
parameter, and instead only requires tuning the L1 regular-
ization weighting coefficient a. With the default PySINDy
function library, which includes a wider variety of terms,
none of the three optimizers yielded a successful identifi-
cation; for brevity, only the SSR result is shown.

Table 2. Identification success outcomes for SINDy. Opti-
mizers tested were STLSQ, SR3, and SSR. “Poly3” repre-
sents a polynomial library containing all possible combina-
tions of two variables with at most degree three, while “De-
fault” is the default PySINDy library (which contains a va-
riety of polynomial, trigonometric, and exponential terms).
Sensitivity is reported with respect to threshold or regular-
ization parameter.

Model Library Optimizer Success Sensitivity
FHN Poly3 STLSQ Yes High
Poly3 SR3 Yes High
Poly3 SSR Yes Low
Default SSR No N/A
FHN-c  Poly3 STLSQ No N/A
Poly3 SR3 No N/A
Poly3 SSR Yes Low
Default SSR No N/A
VF-4 Poly3 SSR Yes Low
VE-7 Poly3 SSR Yes Low

For FHN-c, identification was also unsuccessful without



SINDy fit coefficients:

u' = —0.19906u + 1.19714u* — 0.99786u> — 0.003490> — 0.99990uv + 0.99757Vyyim (1)

v’ = 0.00550u — 0.005000 — 0.00500u>

Exact coefficients:

u = —0.20000u + 1.20000u2 — 1.00000u® — 1.00000uv + 1.00000Vi, (1)

v = 0.00550u — 0.005000 — 0.00500%>

Figure 1. Example comparison of SINDy coefficient fits for the VF-4 model. Top: SINDy fit. Bottom: original model.
Vistim (t) represents the applied stimulus. Note that the v3 SINDy coefficient in ’ is the only value significantly different

from the exact coefficient.

restricting the function library. For this model, the opti-
mizer choice again was important—despite FHN-c varying
little from the FHN model, only SSR with the Poly3 fea-
ture library successfully recovered the FHN-c model. This
choice also maintained low sensitivity to changes in the o
parameter, as it did for the FHN case.

Finally, both the VF-4 and VF-7 models were success-
fully identified using the same Poly3 and SSR combina-
tion that was found to be effective for FHN-c, once more
displaying a desirable low sensitivity to the parameter a.
Fig.[I]shows example results of fitting the VF-4 model.

We also examined the effects of altering the thresh-
old (or o parameter for SSR) quantitatively, as shown in
Fig.[2l In the upper plot, SSR shows a significantly lower
mean squared error (MSE) than that of other optimizers
for threshold values between 10~° and 0.5 while also dis-
playing minimal variation in the MSE across the range of
« values tested. In comparison, the other methods achieve
MSE:s that differ by about ten orders of magnitude as their
threshold values are varied, indicating that the threshold
value must be chosen carefully for these methods.

In the lower plot of Fig.[2] the voltage and recovery vari-
able columns were normalized to have a maximum magni-
tude of one before being passed to the STLSQ and SR3
optimizers, and the results are plotted against the SSR re-
sult from before. This case shows similar results, with
SSR achieving low error across all « values tested. STLSQ
reaches slightly lower MSE values than SSR for the lowest
threshold values, but its higher sensitivity to the threshold
parameter, similar to the sensitivity of SR3, means that the
quality of the results can depend highly on the choice of
the threshold value.

Finally, for cases with applied stimuli (period = 185
time units except for VF-7, with a period of 361 time
units), stimulus terms were added to each model before
applying the SINDy fit. Using the SSR optimizer with
a = 1079 yielded MSE values of 5.27617 - 10~° for FHN,
2.52412 - 1079 for FHN-c, 1.76467 - 1075 for VF-4, and
2.38930 - 10—° for VF-7. Note that for VF-4, this protocol
produced alternans, as shown in Fig. 3| Identification was
also successful under these more complex dynamics, with
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Figure 2.  (Top) Comparison of Mean Squared Error

(MSE) for different optimizers across threshold values
ranging from O to 0.5 in increments of 0.01. (Bottom) The
same comparison after normalizing the SINDy data before
passing it to each optimizer.

the maximum difference in coefficient for any term hav-
ing a magnitude of 0.0035 (maximum correct coefficient
magnitude was 1.2).

4. Discussion

In this paper, we tested the use of SINDy to recover
from data the specific differential equations of four two-
variable models that have been used to describe cardiac
action potentials, including during alternans. In fitting sin-
gle action potentials, SSR performed better than the other
optimizers tested across a variety of typical threshold val-
ues. Thus, SSR provides an advantage over STLSQ or
SR3 for most use cases because threshold tuning is not re-
quired to obtain accurate results. Even when such tuning
is done for STLSQ or SR3, very small thresholds are re-



Voltage vs. Time (FHN VF-4)
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Figure 3. Voltage vs. time for the 4-parameter VF-4 vari-
ant. In this case, alternans is displayed under a stimulus
of period 185, duration 5, and magnitude 0.12. Parame-
ter values used are « = 0.2, § = 1.1, ¢ = 0.005, and
w=1.0.

quired to achieve the same level of accuracy as SSR, and
such thresholds will introduce unnecessary model com-
plexity by allowing more terms to remain in the final result.
However, normalizing the data, as per the plot in the lower
part of Fig. [2] improves the performance of the STLSQ
and SR3 optimizers for thresholds below 0.2, bringing the
MSE near machine precision. In fact, STLSQ outperforms
SSR for thresholds between 0.1 and 0.2, likely due to
the fast-slow nature of the FHN-based systems we tested.
Whereas the voltage variable v ranges from 0 to 1 every
AP before normalization, the recovery variable v takes on
much smaller values due to the coefficient ¢, whose value
ranged between 10~2 and 103 for each SINDy fit.

Our MSE results for STLSQ at low thresholds initially
seem to agree with SINDy benchmarking tests that found
STLSQ to perform well enough in all cases to justify its
use as the default optimizer in the PySINDy package [|10]].
In practice, however, we did not find this improvement to
be significant—in fact, in our studies, SSR outperformed
STLSQ on data containing time-dependent stimuli to the
point where it remained the most promising optimizer
choice for the two-variable cardiac models we tested.

5. Conclusion

The understanding of cardiac electrophysiology models
stands to benefit greatly from data-driven methods. One
particular method, SINDy, shows promise in identifying
viable models that are both accurate and interpretable. In
particular, SINDy successfully identified four two-variable
cardiac models, including a case with alternans dynam-
ics. Different optimizers displayed varying levels of ef-
fectiveness in identifying models, with SSR showing over-
all greater consistency than other options, including SR3
and STLSQ, when compared across model complexity and

MSE metrics. Further study is needed to test SINDy’s use-
fulness in discovering cardiac models directly from exper-
imental data.
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