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Abstract 

This paper introduces the solution of team 
cardio_Basel25 to the PhysioNet Challenge 2025.  

Chagas disease, caused by Trypanosoma cruzi, remains 
underdiagnosed in low-resource settings where 
serological testing is limited. Given the widespread 
availability of electrocardiography (ECG) and the 
conduction abnormalities characteristic of Chagas 
cardiomyopathy, ECG-based artificial intelligence offers a 
scalable alternative for early detection. A deep transfer 
learning model was developed based on a pretrained 
InceptionTime architecture, and fine-tuned on Brazilian 
(CODE-15%, Sami-Trop) and European (PTB-XL) ECG 
datasets. Recordings were preprocessed with filtering, 
downsampling, normalization, and 5-second segment 
extraction, with data augmentation applied during 
training. The training loss consisted of binary cross-
entropy with a penalization term to emphasize the 
challenge metric. Inference combined predictions across 
multiple ECG segments and models. The approach 
achieved a cross-validation score of 0.42 and a score of 
0.382 on the validation set, ranking 27th on the official 
leaderboard. These findings demonstrate the feasibility of 
deep transfer learning for ECG-based Chagas screening 
and its potential to expand diagnostic access in 
underserved regions. 

 
1. Introduction 

Chagas disease, caused by Trypanosoma cruzi, affects 
6–8 million people in Latin America and causes an 
estimated 10,000 deaths annually [1]. Despite its 
significant burden, diagnosis still relies on multiple 
serological assays, which are costly and less accessible in 
low-resource regions [1], [2]. Machine learning 
approaches have been applied to serological data for 
detecting the parasite in blood samples, yet these methods 
leave the diagnostic gap in underserved areas unaddressed 
[3], [4].  

The electrocardiogram (ECG) offers a low-cost, 
widely available alternative. Chagas cardiomyopathy is 
often marked by characteristic conduction disturbances—
such as right bundle branch block, left anterior 
hemiblock, first-degree atrioventricular block, atrial 
fibrillation, and ventricular ectopy—which not only 

define its clinical profile but have also been integrated 
into established prognostic scores [5], [6], [7], [8], [9]. 
Yet, the direct use of ECG for Chagas disease screening 
remains underexplored, representing a critical opportunity 
to improve early detection and expand diagnostic 
reach.[10] 

The 2025 PhysioNet Challenge seeks to address this 
research gap by leveraging two Brazilian datasets—
CODE-15% and Sami-Trop—and one European dataset, 
PTB-XL [11], [12], [13], [14]. Our work aims to use a 
large pre-trained ECG model and fine tune it to better 
detect the Chagas disease. 

 
2. Method 

 
Our methodology was inspired by the preprocessing 

framework of the PhysioNet 2021 Challenge winner and 
by the binary outcome prediction model of Buscher et al., 
which relies on the InceptionTime backbone architecture 
[1], [2]. 

The architecture comprises two residual blocks, each 
containing three inception modules. The first inception 
module processes the raw ECG signal by applying a 
convolution across all channels to generate a bottleneck 
layer with 32 filters. This representation is subsequently 
passed through three parallel convolutional layers, each 
with 32 filters but distinct kernel sizes. The outputs of 
these convolutions are concatenated with the result of a 
max-pooling operation applied directly to the raw ECG 
(Figure 1). Each subsequent inception module receives as 
input the output of the preceding module.  

At the final stage, an adaptive average pooling layer 
reduces the temporal dimension to a single value, 
producing a feature vector of size 128 (32 × 4). A fully 
connected layer (128, 1) then transformed this into the 
ECG feature vector. To leverage demographic 
information, patient age and sex were concatenated with 
the ECG feature before classification. The combined 
vector was passed through two fully connected layers of 
sizes (3, 3) and (3, 1), respectively, yielding the final 
prediction. The InceptionTime backbone was initialized 
with pretrained weights from Buscher et al., derived from 
a large emergency department ECG cohort [1]. 

All ECG recordings were preprocessed prior to model 
input. A zero-phase third-order Butterworth band-pass 
filter (1–47 Hz) was applied, followed by downsampling 



to 200 Hz and z-score normalization. From each 
recording, a random 5-second segment was extracted. To 
improve model robustness, data augmentation was 
applied during training: random lead masking (10% of 
leads set to zero), two temporal masks covering 
approximately 6% of the signal window, and additive 
Gaussian noise sampled from 𝒩(0, 0.02).  

The optimization objective was a penalized binary 
cross-entropy (pBCE) loss, designed to align with the 
challenge metric requirements. For a training batch with 
labels y ∈ {0,1} and predictions p ∈ [0,1], the loss is 
defined as: 
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Where α is a hyperparameter that was set at 0.66. The 

first term is the standard binary cross-entropy, and the 
second term penalizes false negatives above the 95th 
percentile of predicted probability: 
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Where 𝔅 is the set of all indices in the batch, 𝑦) the 
outcome,	𝑦) 	the	predicted	outcomes, 𝜏-./0	the 95th 
percentile of predicted outcomes in the batch. 

A 5-fold cross-validation (CV) strategy was performed 
in which five models were trained independently with 
different data splits. Model training was conducted using 
the fastai framework (built on the PyTorch library) with 
the Adam optimizer. Training proceeded in two phases. 
In the first phase, all layers except the final linear 
classifier were frozen, and the model was pretrained for 5 
epochs using the One-Cycle learning rate policy, with the 
learning rate decreasing from 1×10−2 1×10−4. In the 
second phase, all layers, including the Inception modules, 
were unfrozen and trained for 25 epochs with the One-

Cycle policy, with learning rates ranging from 5×10−3 to 
5×10−6. A learning rate scheduler (ReduceLROnPlateau, 
patience = 2, reduction factor = 0.1) was applied, and 
early stopping was employed based on validation loss 
with a patience of 10 epochs. 

For inference, the three models with the highest 
validation performance were selected. As the input length 
was restricted to 5 seconds, five random 5-second 
segments were extracted from each ECG recording. Each 
model generated probability estimates for all segments, 
which were averaged to obtain a segment-level prediction 
per model. The final output probability was then 
computed as the mean of the three model-level 
predictions. 

Computations were performed using a NVIDIA 
GeForce RTX 3090 (24 GB), computational resources 
were allocated to hyperparameter optimization using the 
Optuna framework, followed by iterative refinement in 
subsequent training runs.  

 
3. Results 

Cross-validation training scores were not directly 
computed, as this would have substantially increased 
training time. Instead, for each fold, the training loss and 
validation score corresponding to the epoch with the best 
validation loss were extracted. Table 1 reports the mean ± 
standard deviation of these values across the 5 folds.  

Table 1:Challenge scores and losses across datasets 

The validation score was the 27th/365 of the official 
phase leaderboard.  

Dataset Score Custom Loss 
CV training - 1.10±0.06 
CV validation 0.42±0.01 1.14±0.03 
Validation 0.382 - 
Test - - 

Figure 1: Inception module for time series classification (from the original paper). Bottleneck is visually 
described with a single dimension versus 32 in implementation. 



 
4. Alternatives and future work 

Several alternative methodologies were explored 
during the official phase, though each presented 
limitation. Training either the classification head or the 
full ECGFounder model on ECG signals upsampled to 
500 Hz resulted in unstable training dynamics (gradient 
explosion). Similarly, we evaluated an approach in which 
the 27 cardiac outcome predictions produced by 
ECGFounder were used as input features for an XGBoost 
classifier. However, when assessed using 5-nested-fold 
cross-validation, this strategy achieved lower 
performance than our deep learning model. A student–
teacher framework based on the ECGFM model, which 
incorporated 150 predictions into a distillation loss, was 
also investigated; however, this approach suffered from 
either gradient explosion or severe overfitting.  

These limitations highlight the challenges of adapting 
large, pretrained ECG models within the competition’s 
time constraints. Future work could examine 
generalization performance of ECGFounder and ECGFM 
under specific training strategies and explore advanced 
regularization schemes for distillation.  

 
5. Conclusion 

In this study, we developed and evaluated a deep 
learning model for Chagas disease detection from digital 
ECG signals, motivated by the urgent need for accessible 
diagnostic tools in low-resource regions. Leveraging a 
pretrained InceptionTime backbone and fine-tuning it on 
Brazilian and European datasets, we achieved competitive 
performance in the 2025 PhysioNet Challenge. Our results 
confirm the potential of ECG-based AI to complement 
traditional serology and expand diagnostic reach.  
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